LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2017

MT 5510 - STATICS

Date: 08	3-11-2017	Dept. No.	Max.

Time: 09:00-12:00

PART - A

Answer ALL questions.

 $(10 \times 2 = 20)$

: 100 Marks

- 1. Let **F** be a force acting at a point O. Find the components of **F** along the direction OX which makes an angle α with **F** and OY which makes an angle β with **F**.
- 2. State triangular law of forces.
- 3. Define moment of a force.
- 4. Define a couple.
- 5. Give an example of a body where the centre of mass is not necessarily a point of the body.
- 6. What is meant by centre of gravity of a compound body?
- 7. Define unstable equilibrium.
- 8. State equation of virtual work.
- 9. Define span of a catenary.
- 10. What is a suspension bridge?

PART - B

Answer any FIVE questions

 $(5\times8=40)$

- 11. Two forces of magnitude P and Q (P>Q) act on a particle and the angle between the forces is α . If the magnitudes of the forces are interchanged, show that the resultant turns through the angle 2 tan $^{-1}$ ($\frac{P-Q}{P+Q}$ tan $\frac{\alpha}{2}$).
- 12. State and prove Lami's theorem.
- 13. A heavy carriage wheel of weight W and radius r is to be dragged over an obstacle of height h by a horizontal force of magnitude F applied to the centre of the wheel. Show that F must be greater than $\frac{W\sqrt{2rh-h^2}}{r-h}$.
- 14. Find the centre of gravity of a thin uniform triangular lamina.
- 15. Find the resultant of two like parallel forces.

- 16. A uniform rod of length 2a rests in equilibrium against a smooth vertical wall and upon a smooth peg at a distance b from the wall. If in the position of equilibrium the rod is inclined at an angle θ with the wall, show that $\sin\theta = (\frac{b}{a})^{\frac{1}{3}}$.
- 17. Derive Cartesian equation of the catenary.
- 18. A uniform chain of length l is to be suspended from two points A and B, in the same horizontal line so that either terminal tension is n times that at the lowest point. Show that the span AB must be $\frac{l}{\sqrt{n^2-1}}\log(n+\sqrt{n^2-1})$.

PART - C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19 (a) Discuss the equilibrium of a heavy particle on a smooth inclined plane.
 - (b) State and prove Varignon's theorem of moments.

(10+10)

- 20 (a) Two strings AB and AC are knotted at A, where a weight W is attached. If the weight hangs freely and in the position of equilibrium, with BC horizontal, AB: BC: CA = 2:4:3, show that the tensions in the strings are $\frac{7W}{2\sqrt{15}}$ and $\frac{11}{4\sqrt{15}}$.
 - (b) Two rough particles connected by a light string rest on an inclined plane. If their weights and corresponding coefficients of friction are W_1 , W_2 and μ_1 , μ_2 respectively and $\mu_1 > \tan \alpha > \mu_2$ where α is the inclination of the plane with the horizon, prove that $\tan \alpha = \frac{\mu_1 W_1 + \mu_2 W_2}{W_1 + W_2}$, if both particles are on the point of moving down the plane. (10+10)
- 21 (a) Find the centre of gravity of the segment of a sphere of radius a cut off by a plane at distance c from the centre,
 - (b) A string of length l hangs between two points not in the same vertical line and the tangents at the end points are inclined at an angle α and β with the horizontal. Show that the height of one extremity above the other is $\frac{l \sin \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$, the two extremities being on the same side of the vertex of the catenary. (10+10)
- 22 (a) A rod lies in equilibrium with its ends on two smooth planes inclined at an angle α,β to the horizontal, the planes intersecting in a horizontal line. Show that the inclination of the rod to the horizontal is $\tan^{-1}\left(\frac{\sin(\alpha \sim \beta)}{2\sin\alpha\sin\beta}\right)$.
 - (b) State and prove the principle of virtual work for a system of coplanar forces acting on a rigid body.(10+10)
