LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2018

16UMT5MC01- REAL ANALYSIS

Date: 27-10-2018 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

$\underline{PART} - \underline{A}$

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. When do you say that a set is order complete?
- 2. If a and b are real numbers show that $|a + b| \ge ||a| |b||$.
- 3. If (M,d) is a discrete metric space, find B(x; 1).
- 4. Define compact set and give an example of it.
- 5. Show that every convergent sequence is a Cauchy sequence in R.
- 6. When do you say that a function $f:X \rightarrow Y$ is continuous at x in X?
- 7. Show that every differentiable function is also continuous.
- 8. Define local minimum and local maximum of a function at a point.
- 9. Define a strictly increasing function and strictly decreasing function.
- 10. When do you say that a function f is of bounded variation on [a,b]?

PART - B

Answer any FIVE questions

 $(5 \times 8 = 40)$

- 11. State and prove Archimedean property.
- 12. Show that every subset of a countable set is countable.
- 13. Let Y be a subspace of a metric space X. Show that a subset A of Y is open in Y if and only if $A = Y \cap G$ for some set G open in X.
- 14. Prove that a closed subset of a compact metric space is compact.

- 15. Let X,Y be metric spaces, S be a non empty subset of X, f:X \rightarrow Y and x₀ be an accumulation point of S. Show that $\lim_{x\to x_0} f(x) = y_0$ if and only if for every sequence $\{x_n\}$ of points in $S \{x_0\}$, that converges to x₀, $\{f(x_n)\}$ converges to y₀.
- 16. Let $f(x) = x^2$ for x in R. Show that f is continuous but not uniformly continuous.
- 17. State and prove Rolle's theorem.
- 18. If f is monotonic on [a,b], show that the set of all discontinuities of f is countable.

PART - C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19. (a) Show that $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots$ is irrational.
 - (b) State and prove Cauchy-Schwarz inequality.
- 20. (a) Let S be a subset of \mathbb{R}^n . If every infinite subset of S has an accumulation point in S, show that S is closed and bounded.
 - (b)Show that every compact subset of a metric space is complete.
- 21. (a) State and prove Taylor's theorem.
 - (b) State and prove intermediate value theorem for derivatives.
- 22. (a) State and prove Chain rule for differentiation.
 - (b) Let f be a bounded variation on [a, b] and $c \in (a, b)$, then prove that f is bounded variation on [a, b] as well as [c, b] and $V_f[a, b] = V_f[a, c] + V_f[c, b]$.

