LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2019

16/17UMT5MC02 - STATICS

Date:	31-10-	2019
T:	00.00	10.00

Dept. No.

Max.: 100 Marks

SECTION - A

Answer ALL questions

 $(10\hat{1} 2 = 20)$

- 1. State fundamental theorem of Statics.
- 2. What is the resolved part of a force F (i) along the direction of the force F (ii) in the direction perpendicular to F.
- 3. Define moment of a force F.
- 4. Define a couple and the arm of a couple.
- 5. Give an example of a body where the centre of mass is not a point of the body.
- 6. State the formula for coordinates of the centre of gravity a rigid body.
- 7. State Hooke's law.
- 8. When do you say that a body is in stable equilibrium?
- 9. Define catenary.
- 10. What is the shape of the catenary when the parameter is very large?

SECTION - B

Answer any FIVE questions.

 $(5\hat{1} 8 = 40)$

- 11. Two forces acting on a particle are such that if the direction of one of them is reversed, the direction of the resultant is turned through a right angle. Prove that the forces must be equal in magnitude.
- 12. State and prove Lami's theorem.
- 13. Find the resultant of two like parallel forces.
- 14. A non uniform rod AD rests on two supports B and C at the same level where AB = BC = CD. If a weight p is hung from A or a weight q is hung from D, the rod just tilts. Show that the weight of the rod is p+q and the centre of gravity of the rod divides AD in the ratio 2p+q: p+2q.

- 15. Show that the C.G of a thin uniform triangular lamina is the same as the C.G. of three particles of equal weight placed at the vertices of the lamina.
- 16. Find the C.G. of a uniform circular arc subtending angle 2α at the centre.
- 17. Find the work done in stretching an elastic string from its natural length l to the length l.
- 18. A string of length 2l hangs over two small smooth pegs in the same horizontal level. Show that, if h is the sag in the middle, the length of either part of the string that hangs vertically is $h + l \sqrt{2hl}$.

SECTION - C

Answer any TWO questions

 $(2\hat{1} 20 = 40)$

- 19. (a) Determine the magnitude and direction of the resultant of two given forces with a common point of application.
 - (b) State and prove Varignon's theorem on moments.

(10+10)

- 20. (a) A uniform rod AB of length 2a and weight W is resting on two pegs C and D in the same level at a distance d apart. The greatest weights that can be placed at A and B without tilting the rod are W_1 and W_2 respectively. Show that $\frac{W_1}{W+W_1} + \frac{W_2}{W+W_2} = \frac{d}{a}$.
 - (b) Find the centre of gravity of a uniform solid tetrahedron. (10+10)
- 21. (a) A solid hemisphere is supported by a string fixed to a point on its rim and to a point on a smooth vertical wall with which the curved surface of the hemisphere is in contact. If θ and ϕ are the inclinations of the string and the plane base of the hemisphere to the vertical, prove that $tan\phi = \frac{3}{6} + tan\theta$.
 - (b) Discuss the work done by the tension in an elastic string.

(10+10)

- 22. (a) Discuss the stability of a body rolling over a fixed body.
 - (b) Find the Cartesian equation of the catenary.

(10+10)
