LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2019

18PMT3ES01 - COMBINATORICS

(UCEAT LUN VESTRA	
	Date: 06-11-2019 Dept. No. Max. : 100 M Time: 09:00-12:00	arks
F	Answer ALL questions:	
[.	a) Define combinatorial distribution with an example.	
	Ôr	/-
	b) Find the partitions of 4-set into 3 classes.	(5
	c) i) In how many permutations of the word AUROBIND do the vowels appear in alphabetical of ii) Prove that the number of distributions of n distinct objects into m distinct boxes with the object box arranged in a definite order is $[m]^n$. Or	
	d) i) There are 16 books on a bookshelf. In how many ways can 6 of these books be selected if a selection must not include two neighboring books?	
	_	(6+9)
I.	a) Prove the algebra of formal power series.	
	Or b) Define exponential generating function with an example	(5)
	c) Prove by recurrence relation, $1^3 + 2^3 + 3^3 + + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.	
	Or d) If n lines are in general position, what is the number of regions into which they divide the line?	(15)
Π	. a) List all the expressions of complete homogeneous symmetric function h_4 .	
	b) Define symmetric function with an example.	(5
	c) Briefly explain the four types of symmetric functions. Or	
	d) Given $\lambda \neg N$, prove that k_{λ} is a linear combination of the s_{μ} 's.	(15)
V	. a) Find the number of positive integers, not greater than 100, which are not divisible by 2, 3, or 5. Or	
	b) Prove the recurrence relation, $R(t, C) = t R(t, C_{dd}) + R(t, C_{d})$ for the rook Polynomial.	(5)
	c) Briefly explain the problem of Fibonacci with an example. Or	
		15)

V. a) Find the cycle structures of all permutations of 20 beads on a circular necklace generated by a single permutation
Or b) How many distinct circular word patterns of length 8 are possible on an alphabet of two letters? (5)
c) State and prove Burnside's lemma.
Or d) State and prove Polya's enumeration theorem. (15
~~~~~