LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2019

18PMT3MC01 - TOPOLOGY

CUCEAT LUX VESTRA		
Date: 29-10-2019 Time: 09:00-12:00	Dept. No.	Max. : 100 Marks
Δns	swer all the questions. Each question	carries 20 marks
Alis	wer an the questions. Each question	carres 20 marks.
a)1)Construct Cantor's set an	and state Cantor's intersection theorem	
	OR	
a)2) Define the following in a	a topological space: (i) interior point an	d (ii) boundary
point. How do they help	egical spaces. (5)	
o)1) Let X and Y be metric sp	paces and f a mapping of X into Y. The	en prove that if
f is continuous then $f^{-1}(C)$	G) is open whenever G is open in Y.	
(a)2) If $\{A_n\}$ is a sequence of r	nowhere dense sets in a complete metri	ic space X then prove that there exists a poir
in X which is not	in any of the A _n 's.	(5+10)
	OR	
e)1) If a convergent sequence	in a metric space has infinitely many p	points then prove that its limit is a limit poin
of the set of points of the	e sequence.	
e)2) Let X be a metric space a	and let Y be a complete metric space, a	nd let A be a dense subspace of X. If f is
uniformly continuous ma	apping of A into Y then prove that f car	n be extended uniquely to a uniformly
continuous mapping g of	of X into Y.	(5+10)
I a)1) What are the other pop	pular names for topology? Justify.	
	OR	
a)2) Prove that every separ	rable metric space is second countable.	(5)
b)1) State and prove Linde	elof's theorem	
b)2) State and prove Tycho	onoff's theorem.	(7+8)
	OR	
c)1) State Heine Borel theo	orem.	
c)2) Prove that a topologic	cal space is compact if every class of su	ubbasic closed sets with the finite
intersection property	has non-empty intersection.	(5+10)
II a)1) State Bolzano-Weierst	trass property and define sequentially of	compactness. How do these concepts help us
in understanding the c	concept of compactness.	

OR

a)2) State Lebesgue covering lemma.

(5)

b) State and prove Ascoli's theorem.	
OR	
c)Consider the following statements:	
(i) X is compact (ii) X is sequentially compact and (iii) X has the Bolzano-Weierstrass pro	perty.
Prove that both the statements (i) and (ii) imply the third statement.	(15)
IV a)1)) Prove that any continuous image of a connected space is connected.	
OR	
a)2) Prove that the spaces R ⁿ and C ⁿ are connected.	(5)
b)1) Prove that the range of continuous real function defined on a connected space is an int	terval.
b)2) Prove that a subspace of a real line R is connected if and only if it is an interval. In part	rticular show that R is
connected.	(5+10)
OR	
c)1) Prove that a topological space X is disconnected iff there exists a continuous mapping	of X
onto the discrete two- point space $\{0,1\}$.	
c)2) Let X be a compact Hausdorff space. Then prove that X is totally disconnected if and	only if it has an open
base whose sets are also closed.	(7+8)
V a)1) State Real and Complex Stone Weierstrass theorems.	
OR	
a)2) State the two lemma required to prove extended Stone Weierstrauss theorems.	(5)
b) State and prove Weierstrass approximation theorem.	
OR	
c) Define locally compact Hausdorff spaces. How can it be made into a compact Hausd	orff space. Also,
prove that X_{∞} is Hausdorff and compact.	(15)
