LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – **NOVEMBER 2019**

MT 1503 - ANALYTICAL GEOMETRY OF 2D, TRIG. & MATRICES

 Date: 01-11-2019
 Dept. No.
 Max. : 100 Marks

 Time: 09:00-12:00
 Max. : 100 Marks

Part A (Answer ALL questions)

- 1. Write the expansion of $\tan 3_{"}$ in powers of $\tan_{"}$.
- 2. Expand $\cos_{"}$ in a series of powers of ".
- 3. Show that $\cosh^2 x + \sinh^2 x = \cosh 2x$.
- 4. Find Log(1-i).

5. Determine the characteristic equation of the matrix $A = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$.

- 6. State Cayley-Hamilton theorem.
- 7. What is the pole of the line 2x+3y+4=0 with respect to the parabola $y^2 = 4ax$?
- 8. Define conjugate of two diameters of an ellipse.
- 9. What is the formula to find the distance between the points $P(r_{1, \# 1})$ and $Q(r_{2, \# 2})$?
- 10. Define rectangular hyperbola.

Part B (Answer any FIVE questions)

- 11. Expand sin⁷ " in a series of sines of multiples of ".
- 12. Evaluate $\lim_{x\to 0} \frac{\tan_{\#} + \sec_{\#} 1}{\tan_{\#} \sec_{\#} + 1}$.

13. If $\sin(A+iB) = x+iy$, prove that (i) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$ (ii) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$.

14. Determine the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and hence find its inverse using

Cayley-Hamilton theorem.

15. Compute the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

16. Find the locus of the poles of all tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4bx$.

$$(5 \times 8 = 40)$$

- 17. Find the asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$.
- 18. Find the locus of the foot of the perpendiculars drawn from the pole to the tangents to the circle $r = 2a \cos_n$.

19. a) Prove that $\frac{\sin 6_{''}}{\sin _{''}} = 32\cos^5 _{''} - 32\cos^3 _{''} + 6\cos _{''}$.

b) Expand \sin^4 , \cos^2 , in a series of cosines of multiples of , .

(10 + 10)

- 20. a) Separate into real and imaginary parts $\tan^{-1}(x+iy)$.
 - b) Deduce the expansion of $\tan^{-1} x$ in powers of x from the expansion of $\log(a+ib)$.

$$(12+8)$$

21. Diagonalise the matrix
$$A = \begin{bmatrix} 7 & -2 & -2 \\ -2 & 1 & 4 \\ -2 & 4 & 1 \end{bmatrix}$$
.

(20)

22. a) A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose centre is *C* meets the circle $x^2 + y^2 = a^2 + b^2$ at *Q* and *Q'*. Prove that *CQ* and *CQ'* are conjugate diameters of the ellipse.

b) Trace the curve $\frac{12}{r} = 4 + \sqrt{3} \cos_n + 3 \sin_n$. (12 + 8)

\$\$\$\$\$\$\$\$\$