

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2019

PMT 1501 - LINEAR ALGEBRA

Date: 30-10-2019	Dept. No.	Max. : 100 Mark
Time: 01:00-04:00		

Answer ALL the questions:

- I. a) i) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Prove that the following statements are equivalent:
 - 1. c is a characteristic value of T.
 - 2. The operator (T-cI) is singular.
 - 3. $\det(T-cI) = 0$.

$$(\mathbf{OR}) \tag{5}$$

(OR)

ii) Let
$$A = \begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}$$
 be the matrix of a linear operator T defined on R³ with respect

to the standard ordered basis. Prove that A is diagonalizable.

b) i) State and prove Cayley Hamilton theorem,

$$(\mathbf{OR}) \tag{15}$$

- ii) Let V be a finite dimensional vector space over F and T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
- II. a) i) Let T be a linear operator on an n-dimensional vector space V. Let A be an n x n matrix. Then prove that characteristic and minimal polynomials for T have the same roots, except for multiplicities.

$$(\mathbf{OR}) \tag{5}$$

- ii) Let W be an invariant subspace for T. The characteristic polynomial for the restriction operator T_w divides the characteristic polynomial for T. The minimal polynomial for T_w divides the minimal polynomial for T.
- b. i) State and prove Primary Decomposition theorem.

$$(OR) (15)$$

- ii) Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and if $c_1, ..., c_k$ are the distinct characteristic values of T, then prove that there exist linear operators $E_1,...,E_k$ on V such that
 - 1. $T = c_1 E_1 + ... + c_k E_k$ 2. $I = E_1 + ... + E_k$ 3. $E_i E_j = 0, i \neq j$ 4. Each E_i is a projection
 - 5. The range of E_i is the characteristic space for T associated with c_i .

III. a. i) If B is an ordered basis for W _i ,	$1 \le i \le k$, then prove that the	e sequences $\mathbf{\mathcal{B}} = (\mathbf{\mathcal{B}}_1 \dots \mathbf{\mathcal{B}}_k)$ is an
ordered basis for W.		

$$(OR) (5)$$

- ii) If W is an invariant subspace for T, then W is invariant under every polynomial in T. Prove that for each α in V, the conductor $S(\ ;W)$ is an ideal in the polynomial algebra F[x].
- b. i) State and prove Cyclic Decomposition Theorem.

(15)

(OR)

- ii) If W is T admissible then prove that there exists a vector $\alpha \in V$ such that $W \cap Z(\Gamma;T) = \{0\}$. (7)
- iii) Let T be a linear operator on a finite-dimensional vector space V. Let p and f be the minimal and characteristic polynomials for T, respectively. Then prove the following:
 - (1) p divides f.
 - (2) p and f have the same prime factors, except for multiplicities.
 - (3) if $p = f_1^{r_1} f_k^{r_k}$ is the prime factorization of p, then

$$f = f_1^{d_1} \dots f_k^{d_k}$$
 where d_i is the nullity of $f_i(T)^{r_i}$ divided by the degree of f_i . (8)

IV. a) (i) Let V be a finite dimensional inner product space and f be a linear function on V then prove that there is a unique vector in V such that $f(\alpha) = (\alpha /) \forall \alpha \in V$.

$$(OR) (5)$$

- (ii) Let V be a complex vector space and 'f' a form on V such that $f(\alpha, \alpha)$ is real for every α . Then prove that f is Hermitian.
- (b) (i) Let V and W be finite-dimensional inner product spaces over the same field, having the same dimension. If T is a linear transformation from V into W, then prove that the following are equivalent.
 - (i) T preserves inner products
 - (ii) T is and (inner product space) isomorphism.
 - (iii) T carries every orthonormal basis for V onto and orthonormal basis for W.
 - (iv) T carries some orthonormal basis for V onto an orthonormal basis for W. (15)

(OR)

- (ii) Let V be a finite-dimensional inner product space, and let T be a self-adjoint linear operator on V.Then prove that there is an orthonormal basis for V, each vector of which is a characteristic vector for T.
- (iii) Let V be a finite-dimensional complex inner product space and let T be any linear operator on V.

 Then prove that there is an orthonormal basis for V in which the matrix of T is upper triangular. (7)

- V. a) (i) Let V be the finite dimensional vector space over F. Let T be the linear operator on V. Then prove that T is diagonalizable iff the minimal polynomial for T has the form $f(x) = (x c_1)(x c_2)...(x c_k) \text{ where } c_{i_1}c_{i_2}...c_k \text{ are distinct characteristic elements.}$ (OR)
- (b) Let V be a finite-dimensional vector space over a field of characteristic zero, and let f be a symmetric bilinear form on V. Then there is an ordered basis for V in which f is represented by a diagonal matrix.
- b) (i) Let V be a finite-dimensional vector space over the field of complex numbers. Let f be a symmetric bilinear form on V which has rank r. Then prove that there is and ordered basis $\mathbf{\mathcal{B}} = \{ 1, ..., n \}$ for V such that
 - (i) The matrix of f in the ordered basis $\mathbf{\mathcal{B}}$ is diagonal;

(ii)
$$f(S_j, S_j) = \begin{cases} 1, & j = 1, ..., r \\ 0, & j > r. \end{cases}$$
 (15)

(ii) Let V be an n-dimensional vector space over the field of real numbers, and let f be a symmetric bilinear form on V which has rank r. Then prove that there is an ordered basis $\{1, 2, ..., n\}$ for V in which the matrix of f is diagonal and such that $f(j, S_j) = \pm 1, j = 1, ..., r$. Furthermore, the number of basis vectors j for which $f(j, S_j) = 1$ is independent of the choice of basis.

~~~~~~~~~