LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2019

PMT 1504 - COMPUTER ALGORITHMS

		_			
	Date: 07-11-2019 Time: 01:00-04:00	Dept. No.		Max. : 100 Ma	ırks
A	nswer ALL the Questions:				
١.	a) Write an algorithm to find the trace and transpose for an $n \times n$ matrix. Also find the time complexity. (5)				
			OR	(3)	
	b) Find the time complexity	(5)			
	c) Define a stack and a circ queue.	ular queue. State p	procedures to add and dele	ete items from a stack and a (15)	circular
			OR		
	d) State Algorithm HeapSo		in an array. Simulate it of		
	A(1:7) = (16, 9, 23,)	, 6, 11, 18, 5).		(15)	
2.	a) Give the recurrence relative when $a = 5$, $b = 4$, $f(n) = 6$	^ -	for divide-and-conquer al OR	gorithm. Solve the recurrence (5)	e relation
	b) Find the worst-case time	for hingry search	=	(5)	
	b) I find the worst-case time	for officially search	argoriumi.	(3)	
	c) State Algorithm QuickSe	ort. Simulate it on	A(1:8) = (40, 60, 100, 20)	0, 70, 120, 10, 50). (15)	
			OR	(13)	
	d) State algorithm MergeSo	ort Simulate it on		81, 3, 23, 11). Draw tree of	calls of
	MergeSort and Merge w		11(1:0) = (13, 32, 30, 70,	(15)	cuits of
3	a) Explain the knapsack pro	oblem with an exa	mnle	(5)	
•	a) Explain the knapsack pro	goroni with the Cha	OR	(8)	
	b) Let J be a set of k jobs and $\dagger = i_1 i_2 \dots i_k$ a permutation of jobs in J such that $d_{i_1} \le d_{i_1} \le \dots \le d_{i_k}$. Prove that J is a feasible solution if and only if the jobs in J can be processed in the order \dagger without violating the deadline. (5)				
	c) With usual notations, prove that if $l_1 \le l_2 \le \cdots \le l_n$, the ordering $i_j = j$, $1 \le j \le n$ minimizes $\sum_{i=1}^n \sum_{j=1}^n l_{i_j}$ overall possible permutations of i_j . State Algorithm Store and simulate it when $n = 15$, $m = 3$ and the length of the programs are 42, 23, 11, 5, 33, 15, 8, 45, 20, 35, 40, 2, 13, 25, 6.				
		. , , , , -	. , , , , , , , , , , , , , , , , , , ,	(15)	
			OR	• •	
	_	_		s with weight values (q_1, q_2) late the algorithm on 11 file	_

80, 70, 56, 90, 5, 44, 35, 63, 15, 25, 40 and find the weighted external path length of the two-way merge

tree representing a merge pattern.

1

(15)

4. a) State an algorithm that present a recursive formulation of backtracking technique.

(5)

OR

b) Write an algorithm to find all *m*-colorings of a graph.

(5)

c) Explain *n*-queen's problem and give an algorithm to place the k^{th} queen in column i of a $n \times n$ chessboard and a backtracking algorithm to solve the *n*-queens problem.

(15)

OR

d) State algorithm SumOfSub. Let $w = \{4, 6, 8, 9, 10, 15\}$ and m = 25. Find all possible subsets of w that sums to m using SumOfSub and draw the portion of state space tree generated by SumOfSub.

(15)

5. a) Write a nondeterministic pseudocode for clique decision problem.

(5)

b) Explain the terms 'Polynomially solvable' and 'NP-complete'. State Cook's theorem.

(5)

c) Define node cover for a graph. Find the size of node cover for the following graph.

Prove that the node cover decision problem is NP-Complete.

(15)

OR

d) Explain the maximum clique problem with an example. Prove that clique decision problem is NP-complete. (15)

@@@@@@