LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **PHYSICS**

FIRST SEMESTER - NOVEMBER 2022

UMT 1301 - MATHEMATICS FOR PHYSICS

Date: 01-12-2022 Dept. No. Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

Part - A

Answer ALL Questions:

 $(10 \times 2 = 20)$

- 1. Find the n^{th} derivative of $\cos(ax + b)$.
- 2. Show that the subtangent of the curve $y = a^x$ is of constant length.
- 3. Expand $(1 x)^{-2}$.
- 4. State D' Alembert's ratio test.
- 5. Find $L(te^t)$.
- 6. Evaluate $L^{-1}\left[\frac{S}{S^2-a^2}\right]$.
- 7. Define symmetric matrix with an example.
- 8. State Cayley Hamilton theorem.
- 9. Define rank correlation.
- 10. Define Poisson distribution.

Part - B

Answer any FIVE Questions:

 $(5 \times 8 = 40)$

- 11. Find the angle of intersection of the cardioids $r = a(1 + cos\theta)$ and $r = b(1 cos\theta)$.
- 12. Find the maxima and minima of the function $2x^3 3x^2 36x + 10$.
- 13. Sum the series $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \cdots$
- 14. Evaluate the sum to infinity of the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \cdots \infty$
- 15. Find $L(t e^{-t} sint)$.
- 16. Calculate the eigen values of the matrix $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$.
- 17. Solve the following system of equations using Cramer's rule.

$$2x + 3y - z = 5$$
, $4x + 4y - 3z = 3$, $2x - 3y + 2z = 2$.

18. Calculate the mean and standard deviation from the following:

X	12	14	16	18	20	22	24
f	6	12	18	26	16	10	8

T

Answer any TWO Questions:

 $(2 \times 20 = 40)$

- 19. (a) If $y = \sin(m \sin^{-1} x)$, prove that $(1 x^2)y_2 xy_1 + m^2y = 0$. Also prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0.$
 - (b) Discuss the maxima and minima of the function $x^3y^2(6-x-y)$.
- 20. Using Laplace transform solve $y'' + 2y' + 5y = 4e^{-t}$ given that y(0) = y'(0) = 0.
- 21. Verify Cayley Hamilton theorem and find the inverse of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \\ 2 & 1 & -2 \end{pmatrix}$.
- 22. Calculate the correlation coefficient and obtain the lines of regression for the following data.

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14