LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2016

16PPH1MC04/PH 1820 - MATHEMATICAL PHYSICS - I

Date: 09-11-2016	Dept. No.	Max. : 100 Marks
T' 01.00 04.00	ı	

Time: 01:00-04:00

PART A

Answer ALL questions

 $(10 \times 2 = 20)$

- 1. Write the algorithm of modified Fuler's method to solve differential equations.
- 2. Sketch the graph $y = \sin x$.
- 3. Express $\frac{1+i}{1-i}$ in the form of f(z) = a + ib.
- 4. Give each an example of single valued and multi valued functions.
- 5. Show that vectors $V_1 = (1, -2, 1)$; $V_2 = (2, 1, -1)$ and $V_3 = (7, -4, 1)$ are linearly dependent in \mathbb{R}^3
- 6. The 2 x 2 matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ span the vector space M_{22} of all 2 x 2 matrices with real entries.
- 7. Show that $\beta(m, n) = \beta(n, m)$ where β stands for Beta function.
- 8. Evaluate $\int_{0}^{\pi/2} e^{-x^2} dx$ using Gamma function.
- 9. Evaluate a) $\delta_i^i . \delta_k^j . \delta_l^k$ b) $\delta_i^i A^j$.
- 10. Prove that the contracted tensor A_I^I is a scalar.

PART B

Answer any FOUR questions

 $(4 \times 7.5 = 30)$

11. Solve the system of equations by Gauss-Seidel method.

$$6x + y + z = 105$$
; $4x + 8y + 3z = 155$; $5x + 4y - 10z = 65$.

- 12. In the given region of |z| = 13, evaluate $\int_{c}^{c} \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$.
- 13. Show that a set $s = \{(1,2,1), (2,1,0), (1,-1,2)\}$ forms a basis in \mathbb{R}^3 .
- 14. Express the conjugate metric tensor in spherical coordinates.
- 15. Show that Bessel's generating function is represented by $e^{\frac{x}{2}(t-t^{-1})} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$.
- 16. Find the residue of $\frac{z^3}{(z-1)(z-2)(z-3)}$ where the region is defined by the circle |z|=28.

Answer any FOUR questions

 $(4 \times 12.5 = 50)$

- 17. Using Gauss-Seidel method, starting with initial approximation $x_1 = 0.3$, $x_2 = -0.8$ and $x_2 = 0.3$ evaluate the system of equations $2x_1 x_2 + 2x_3 = 3$; $x_1 + 3x_2 + 3x_3 = -1$; $x_1 + 2x_2 + 5x_3 = 1$.
- 18. Evaluate $\int_{-\infty}^{+\infty} \frac{x^2 x + 2}{x^4 + 10x^2 + 9} dx$ using contour integration.
- 19. Using Gram-Schmidt orthogonalization process construct an orthonormal basis for R^3 with standard inner product out of the basis $\{v_1, v_2, v_3\}$, where $v_1 = (1,0,1)$, $v_2 = (1,0,-1)$, $v_3 = (0,3,4)$.
- 20. Using Frobenius power series method, obtain the solution of Legendre's differential equation.
- 21. a) Find the metric tensor and the expression for the line element in cylindrical coordinates.
 - b) Show that a symmetric tensor of the second order has only $\frac{n(n+1)}{2}$ different components.
 - c) Show that if a tensor is symmetric with respect to two indices in any coordinate system, it will remain symmetric with respect to these two indices in any other coordinate system.
- 22. Compute the real root of $x \log x 1.2 = 0$ using Newton Raphson method.
