	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
1	M.Sc. DEGREE EXAMINATION – BIOTECHNOLOGY
	THIRD SEMESTER – NOVEMBER 2023
	PBT3MC02 – ANIMAL BIOTECHNOLOGY
	Date: 01-11-2023 Dept. No. Max. : 100 Marks
-	Time: 01:00 PM - 04:00 PM
	SECTION A – K1 (CO1)
	Answer ALL the questions $(5 \times 1 = 5)$
1	Choose the best option
a)	Complete DMEM media is typically sterilized by the method of
)	i) Autoclaving ii) Dry heat sterilization
	iii) Filter sterilization iv) Tyndallisation
b)	Which of the following is used for superovulation?
	i) Follicle stimulating hormone ii) Progesterone
	iii) Relaxin iv) Superovulin
c)	Scaffolds used for tissue engineering must be
	i) Biocompatible ii) Non-biocompatible
1)	iii) Non-biodegradable iv) Non-adherent
d)	How do patients feel about the possibilities of using genetics to treat cystic fibrosis and other diseases?
	i) Patients' opinions are evenly split between positive and negative
	ii) Most are supportive and optimistic
	iii) Most have no opinion
	iv) Most are supportive and optimistic
e)	A test designed to identify chromosomal abnormalities present before birth uses a long needle and
	withdraws fluid form the amniotic sac that surrounds the unborn baby. The test is known as:
	i) An ultra sound ii) An amniocentesis
	iii) A chorionic villus sampling iv) A blood test
	SECTION A – K2 (CO1)
	Answer ALL the questions (5 x 1 = 5)
2	Answer in one or two sentences
a)	Comment on HeLa cells.
b)	State the principle of the dye-uptake assay.
c)	Define Tissue Engineering Triad.
d)	What is pharming?
e)	Define DNA microarray.
	SECTION B – K3 (CO2)
	Answer any THREE of the following(3 x 10 = 30)
3	Present an overview of a typical an animal cell culture laboratory.
4	Graphically represent sub culturing and feeding and explain it.
5	Illustrate the process of somatic cell nuclear transfer. Highlight the key steps.
6	Explain how pharmaceutical proteins are producing from transgenic animals.
7	Briefly explain embryo culture.

	SECTION C – K4 (CO3)	
	Answer any TWO of the following	(2 x 12.5 = 25
8	Compare finite and continuous cell lines.	
9	A trypan blue assay was performed of a sample of HeLa cells. The total number of cells four large squares was 204 cells and the number of cells that stained blue was 8 cells. concentration of cells in the given sample and the percentage viability. State the prince trypan blue assay and outline the procedure.	Calculate
0	Recommend a method to produce pluripotent stem cells without destroying embryos.	
1	Compare amniocentesis and chorionic villi sampling.	
	SECTION D – K5 (CO4)	
	Answer any ONE of the following	(1 x 15 = 15
12		
13	You have developed an adherent mammalian cell PBT22 that produces insulin. Recommethod to scale-up the culture.	nmend a
	SECTION E – K6 (CO5)	
	Answer any ONE of the following	$(1 \times 20 = 20)$
14 15		
	5 11	