M.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FIRST SEMESTER – NOVEMBER 2022

PCH 1503 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 28-11-2022 Dept. No. Time: 01:00 PM - 04:00 PM

Part-A

- A microscope using suitable photons is employed to locate an electron in an atom within a distance of 10 Å. What is the uncertainty in the measure of its velocity?
- 2. Mention the limits and Laplacian for circular cylindrical coordinates.
- 3. How many degenerate energy levels lie in $16h^2/8mL^2$ for a particle in a cubic box of length L?
- 4. Obtain the value of $H_0(q)$.

Answer ALL Questions.

- 5. Mention the need for approximation methods.
- 6. Mention the significance of overlap integral.
- 7. Write the Hamiltonian for H_2^+ ion.
- 8. Predict the order for D_{2h} and D_{2d} point groups.
- 9. Distinguish between vertical and horizontal planes.
- 10. Obtain the trace of matrix for the operation S_3^{1} .

Part-B

Answer any EIGHT Questions.

- 11. (a) Identify the acceptable wave functions among the following and justify:
 - (i) $e^{i\varphi}$ (ii) $\tan \theta$.
 - (b) Verify d/dx is a linear operator.
- 12. State and explain the postulates of quantum mechanics.
- 13. What is quantum mechanical tunneling? Provide the suitable evidences for tunneling.
- 14. Calculate the moment of inertia of ${}^{2}D^{37}Cl$ and ${}^{1}H^{37}Cl$ which have an equilibrium bond length of 1.275 Å.
- 15. Obtain Hermite polynomial equation for simple harmonic oscillator.
- 16. Apply variation theorem and predict the ground state energy of hydrogen atom using the trial wave function, $\psi = e^{-\alpha r}$.
- 17. Write down the Schrödinger wave equation for hydrogen atom in terms of spherical polar Coordinates and separate them into three independent variables such as R(r), $P(\theta)$ and $Z(\phi)$.
- 18. How are the average energy integrals H_{aa} and H_{ab} evaluated?
- 19. Mention the importance of Huckel's approximations.
- 20. List the symmetry elements and operations present in BCl_3 molecule.
- 21. Construct the $C_{2\nu}$ character table using Great Orthogonality theorem.
- 22. Obtain the reducible representation relating to the prediction of hybridization scheme in NH₃ molecule.

 $(8\times 5=40)$

(3+2)

Max.: 100 Marks

 $(10 \times 2 = 20)$

Part-C	
Answer any FOUR Questions.	$(4 \times 10 = 40)$
23. a. Normalize the following wave function for a particle in a one-dimensional box of leng	gth
L: $\psi = A \sin(\frac{n\pi x}{L}).$	
b. Obtain the mathematical expression for black-body distribution by Planck's distributi	on
law.	(5+5)
24. a. Derive the expressions for wave function and energy for a particle in 1-D box of leng	th 1.
b. Find out the value of $P_0(x)$ and $P_1(x)$.	(6+4)
25. a. What is a Slater determinant? Write down the determinants for the excited state of He	;
atom.	
b. Obtain the Laguerre equation for hydrogen and hydrogen like atoms.	(5+5)
26. a. Deduce the value of $[L_x^2, L_x]$. Mention its physical significance.	
b. What is secular determinant? How is it solved for ethylene molecule?	(5+5)
27. a. State the variation principle. Using the variation method, determine the energies assoc	ciated with the
trial function $\psi = c_1 \psi_{1a} + c_2 \psi_{1b}$ in the formation of H_2^+ ion.	
b. Calculate the total π -electron energy for 1,3-butadiene.	(6+4)
28. Identify the symmetries of IR and Raman vibrational modes of trans-2-butene using the	C_{2h} character

table provided. Verify whether this molecule obeys mutual exclusion principle.

C2h	Е	C2	i	σh		
Ag	1	1	1	1	Rz	x ² , y ² , z ² , xy
Bg	1	-1	1	-1	Rx, Ry	xz, yz
Au	1	1	-1	-1	z	and the Erector
Bu	1	-1	-1	1	х, у	

aaaaaaa