LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FIRST SEMESTER – **NOVEMBER 2022**

PCH1MC02 – CONCEPTS IN INORGANIC CHEMISTRY

Date: 25-11-2022

Dept. No.

Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION A							
Answer ALL the questions							
1	Answer the following	$(5 \times 1 = 5)$					
(a)	How do you calculate the total number of lattices in an end centred lattice?	K1	CO1				
(b)	Which compound has high melting point, TlCl or TlCl ₃ ?	K1	CO1				
(c)	What is diffusion?	K1	CO1				
(d)	How is crown ether synthesised using a template method?	K1	CO1				
(e)	State Lux-Flood concept of acid-base theory.	K1	CO1				
2	Answer the following	(5 x)	1 = 5)				
(a)	Represent the cell by coupling metal-metal ion electrodes, Cu/Cu ²⁺ and Ni/Ni ²⁺	K2	CO1				
	$(E^{o}_{Cu/Cu}^{2+} = -0.76 \text{ V and } E^{o}_{Ni/Ni}^{2+} = -0.25 \text{ V})$						
(b)	What are the causes for the variation of bond angle in H_2O and NH_3 though they are	K2	CO1				
	possessing same type of hybridisation?						
(c)	How many microstates are possible for d ⁸ system?	K2	CO1				
(d)	Write the number of sigma and pi bonds in SO_4^{2-} ion.	K2	CO1				
(e)	Mention any two examples for hard acids.	K2	CO1				
	SECTION B		1				
	Answer any THREE of the following in 500 words(a)	(3 x 10 = 30)					
3	(a) Construct the Frost diagram from the following Latimer diagram and comment on	K3	CO2				
	the tendency of any species to undergo disproportionation. (5+5)						
	$\operatorname{Hg}^{2+} \xrightarrow{+0.91 V} \operatorname{Hg_2}^{2+} \xrightarrow{+0.796 V} \operatorname{Hg}$						
	(b) Calculate the E_o value for the reduction of HClO to Cl ⁻ in aqueous acid medium.						
	HClO $\xrightarrow{+1.67 V}$ Cl ₂ $\xrightarrow{+1.36 V}$ Cl ⁻						
4	How is lattice energy determined using Born Lande equation? Explain.	K3	CO2				
5	Apply hybridisation concept to discuss the bonding and to predict the number of	K3	CO2				
	sigma and pi bonds in CO_3^{2-} and XeO_3 .						
6	Illustrate BrF ₃ as non-aqueous solvent with suitable example.	K3	CO2				

7	(a) Calculate EAN in $[PtCl_4]^{-2}$ and $[Ru(bpy)_3]$.	K3	CO2			
	(b) Give the IUPAC nomenclature of i) $[CoCl(ONO)(en)_2]^+$ ii) K ₃ [Fe(CN) ₅ NO]					
	(c) How are metal complexes synthesized by condensation method?					
	SECTION C	I				
Ans	Answer any TWO of the following in 500 words(2 x 12.5 = 25)					
8	Prove that the removal of electrons for the element Mn to Mn^{2+} is from 4s orbital and	nd K4	CO3			
	not from 3d orbital by calculating effective nuclear charge.					
9	Deduce the crystal structure of AB ₂ and AB ₃ type of crystal with a suitable example	K4	CO3			
	and a neat diagram.					
10	Highlight the postulates of VSEPR theory and discuss the structure of (i) ClF ₃ (ii)	K4	CO3			
	ICl_4^- .					
11	Illustrate any four types of interactions in supramolecular chemistry.	K4	CO3			
		I	<u> </u>			
SECTION D						
Answe	Answer any ONE of the following in 1000 words (1		x 15 = 15)			
12(a)	Derive the ground term of (i) d^7 system (ii) N_2 and He_2 molecule (8)	K5	CO4			
12(b)	Discuss vacancy and interstitial diffusion with the mechanism. (7)	K5	CO4			
13(a)	Construct the MO diagram for CO ₂ and HF molecules and predict the bond	K5	CO4			
	orders. (10)					
13(b)	Discuss the typical reactions and applications of acetic acid. (5)	K5	CO4			
SECTION E						
Answer any ONE of the following in 1000 words $(1 \times 20 = 20)$						

Answer any ONE of the following in 1000 words		$(1 \times 20 = 20)$	
14(a)	(i)Explain the synergic effect of bonding present in CO molecule with metal in	K6	CO5
	metal carbonyls using MO theory.		
	(ii) Predict EAN of Mn in $Mn_2(CO)_{10}$. (7+3)		
14(b)	What are metal excess and metal deficiency defects? Write the consequences of	K6	CO5
	the defects with examples. (10)		
15(a)	(i) List out the rules to be followed in naming chiral complexes with example.	K6	CO5
	(ii) How is optical activity of metal complexes determined by ORD method? (10)		
15b)	Write a note on the following:	K6	CO5
	(i) Relationship between a and r in bcc type of crystals		
	(ii) Limiting radius ratio and crystal structures		
	(iii) Molecular switches (3+3+4)		
