LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - NOVEMBER 2022

PCH1MCO2 - CONCEPTS IN INORGANIC CHEMISTRY

Date: 25-11-2022
Time: 01:00 PM - 04:00 PM
\square

SECTION A			
Answer ALL the questions			
1	Answer the following	($5 \times 1=5$)	
(a)	How do you calculate the total number of lattices in an end centred lattice?	K1	CO1
(b)	Which compound has high melting point, TlCl or TlCl_{3} ?	K1	CO1
(c)	What is diffusion?	K1	CO1
(d)	How is crown ether synthesised using a template method?	K1	CO1
(e)	State Lux-Flood concept of acid-base theory.	K1	CO1
2	Answer the following	($5 \times 1=5$)	
(a)	Represent the cell by coupling metal-metal ion electrodes, $\mathrm{Cu} / \mathrm{Cu}^{2+}$ and $\mathrm{Ni} / \mathrm{Ni}^{2+}$ $\cdot\left(\mathrm{E}_{\mathrm{Cu} / \mathrm{Cu}^{2+}}{ }^{2+}=-0.76 \mathrm{~V}\right.$ and $\left.\mathrm{E}^{\mathrm{o}} \mathrm{Ni}^{2} \mathrm{Ni}^{2+}=-0.25 \mathrm{~V}\right)$	K2	CO1
(b)	What are the causes for the variation of bond angle in $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} though they are possessing same type of hybridisation?	K2	CO1
(c)	How many microstates are possible for d^{8} system?	K2	CO1
(d)	Write the number of sigma and pi bonds in $\mathrm{SO}_{4}{ }^{2-}$ ion.	K2	CO1
(e)	Mention any two examples for hard acids.	K2	CO1

SECTION B

	Answer any THREE of the following in 500 words	($\mathbf{~ x ~ 1 0 ~ = ~ 3 0) ~}$	
3	(a) Construct the Frost diagram from the following Latimer diagram and comment on the tendency of any species to undergo disproportionation. $\mathrm{Hg}^{2+} \xrightarrow{+0.91 V} \mathrm{Hg}_{2}{ }^{2+} \xrightarrow{+0.796 V} \mathrm{Hg}$ (b) Calculate the E_{o} value for the reduction of HClO to Cl^{-}in aqueous acid medium. $\mathrm{HClO} \xrightarrow{+1.67 V} \mathrm{Cl}_{2} \xrightarrow{+1.36 V} \mathrm{Cl}^{-}$	K3	CO 2
4	How is lattice energy determined using Born Lande equation? Explain.	K3	CO 2
5	Apply hybridisation concept to discuss the bonding and to predict the number of sigma and pi bonds in $\mathrm{CO}_{3}{ }^{2-}$ and XeO_{3}.	K3	CO 2
6	Illustrate BrF_{3} as non-aqueous solvent with suitable example.	K3	CO2

7	(a) Calculate EAN in $\left[\mathrm{PtCl}_{4}\right]^{-2}$ and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]$. (b) Give the IUPAC nomenclature of i) $\left[\mathrm{CoCl}(\mathrm{ONO})(\mathrm{en})_{2}\right]^{+}$ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ (c) How are metal complexes synthesized by condensation method?		K3	CO2
	SECTION C			
Answer any TWO of the following in 500 words		($2 \times 12.5=25$)		
8	Prove that the removal of electrons for the element Mn to Mn^{2+} is from 4 s orbital and not from 3d orbital by calculating effective nuclear charge.		K4	CO3
9	Deduce the crystal structure of AB_{2} and AB_{3} type of crystal with a suitable example and a neat diagram.		K4	CO3
10	Highlight the postulates of VSEPR theory and discuss the structure of (i) ClF_{3} (ii) $\mathrm{ICl}_{4}{ }^{-}$.		K4	CO3
11	Illustrate any four types of interactions in supramolecular chemistry.		K4	CO3
SECTION D				
Answer any ONE of the following in $\mathbf{1 0 0 0}$ words		$(1 \times 15=15)$		
12(a)	Derive the ground term of (i) d^{7} system (ii) N_{2} and He_{2} molecule	K5		CO4
12(b)	Discuss vacancy and interstitial diffusion with the mechanism. (7)	K5		CO4
13(a)	Construct the MO diagram for CO_{2} and HF molecules and predict the bond orders.	K5		CO4
13(b)	Discuss the typical reactions and applications of acetic acid.	K5		CO4
SECTION E				
Answer any ONE of the following in $\mathbf{1 0 0 0}$ words		$(1 \times 20=20)$		
14(a)	(i)Explain the synergic effect of bonding present in CO molecule with metal in metal carbonyls using MO theory. (ii) Predict EAN of Mn in $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$.	K6		CO5
14(b)	What are metal excess and metal deficiency defects? Write the consequences of the defects with examples.	K6		CO5
15(a)	(i) List out the rules to be followed in naming chiral complexes with example. (ii) How is optical activity of metal complexes determined by ORD method? (10)	K6		CO5
15b)	Write a note on the following: (i) Relationship between a and r in bcc type of crystals (ii) Limiting radius ratio and crystal structures (iii) Molecular switches	K6		CO5

