LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - CHEMISTRY
 FIRST SEMESTER - NOVEMBER 2022

PCH1MC03 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 28-11-2022
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Max. : 100 Marks

SECTION A			
Answer ALL the questions			
1	Answer the following	($5 \times 1=5$)	
a)	Mention the limits and Laplacian for spherical coordinates.	K1	CO1
b)	How many degenerate energy levels lie in $11 \mathrm{~h}^{2} / 8 \mathrm{~mL}^{2}$ for a particle in a cubic box of length L?	K1	CO1
c)	Write the Hamiltonian for $\mathrm{H}_{2}{ }^{+}$ion.	K1	CO1
d)	Identify the number of reflection planes present in a molecule of $\mathrm{C}_{4 \mathrm{v}}$ point group.	K1	CO1
e)	Mention the operator involved in resonance integral.	K1	CO1
2	Answer the following	($5 \times 1=5$)	
a)	Find the accelerating potential for an electron with de Broglie wavelength of 5 A.	K2	CO1
b)	Predict the value of $\mathrm{H}_{0}(\mathrm{q})$.	K2	CO1
c)	Write the Slater determinant for the ground state configuration $1 s^{2}$.	K2	CO1
d)	What is the point group of BFCl_{2} molecule?	K2	CO1
e)	Mention the significance of coulomb integral.	K2	CO1
SECTION B			
	Answer any THREE of the following 30)	$(3 \times 10=$	
3	(a) State and explain the postulates of quantum mechanics. (b) Which of the following operators are linear? () ${ }^{2}$ and $\mathrm{d}^{2} / \mathrm{dx}^{2}$. Justify.	K3	CO 2
4	Write the Schrödinger wave equation for rigid rotator in terms of spherical angular coordinates. Using the method of separation, separate them into two independent variables such as $\mathrm{P}(\theta)$ and $\mathrm{Z}(\Phi)$ and obtain the solution for Φ equation.	K3	CO2
5	(a) For a particle in an infinitely deep one-dimensional potential box of length L, apply the trial wave function $\psi=\mathrm{N} x\left(\mathrm{~L}^{2}-x^{2}\right)$ to calculate the energy and obtain the percentage of error. (b) State the Pauli's exclusion principle for ground state electronic configuration of lithium atom.	K3	CO 2
6	a) List the symmetry elements and operations of cyclopropane molecule. b) Obtain the matrix representation for the refelection operation $\sigma_{y z}$.	K3	CO2
7	a) Obtain the reducible representation relating to the prediction of hybridisation scheme in $\mathrm{CH}_{3} \mathrm{Cl}$ molecule. b) Evaluate the overlap integral S_{12} in the formation of $\mathrm{H}_{2}{ }^{+}$ion when the distance of separation between the nuclei of two 1 S orbitals is $1.32 \AA$. Given the first Bohr radius 0.529 Å.	K3	CO2
SECTION C			
	Answer any TWO of the following (2	x $12.5=25$)	
8	(a) Write the conditions for acceptable wave functions. Identify the acceptable wave functions among the following and justify: (i) x^{4} (ii) $\tan \theta$. (b) Show that $\psi=\sin (5 x) \sin (8 y) \sin (2 z)$ is an eigen function of ∇^{2} and find the eigen value? (c) Predict the value of $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}{ }^{2}\right]$ and mention its significance. $(4.5+4+4)$	K4	CO3

9	(a) Calculate the length of the γ-carotene molecule which is a conjugated system having 10 double bonds (+9 single bonds) and a transition wave length of 4300 Å. (b) Write the Hamiltonian and Schrödinger wave equation for hydrogen like atom. Draw the radial plots for $\mathrm{n}=3$ and $1=1$. (5+7.5)	K4	CO 3
10	(a) Explain Born-Oppenheimer approximation and write Kohn-Sham equation. (b) Using the concept of Great Orthogonality theorem and construct $\mathrm{D}_{2 \mathrm{~h}}$ character table.	K4	CO 3
11	(a) What is variation integral? How is it used to determine the energies associated with the trial function $\psi=\mathrm{c}_{1} \psi_{1 \mathrm{a}}+\mathrm{c}_{2} \psi_{1 \mathrm{~b}}$ in the formation of H_{2}^{+}ion? (b) Explain the evaluation of the average energy integrals H_{aa} and H_{ab}. \quad (6.5+6)	K4	CO 3
SECTION D			
Answer any ONE of the following		x 15 = 15)	
12	(a) Derive time dependent Schrödinger wave equation. (b) With the help of perturbation theorem, predict the ground state energy of helium atom. 	K5	CO 4
13	(a) Write the requirement of Hartree-Fock self-consistent field method. (b) Identify the symmetries of IR and Raman vibrational modes of trans-2-butene using the $\mathrm{C}_{2 \mathrm{~h}}$ character table provided. Verify whether this molecule obeys mutual exclusion principle and mention the significance of the Mulliken symbols of modes. (3+12)	K5	CO4
SECTION E			
Answer any ONE of the following		(1×20=20)	
14	(a) Derive the expressions for wave function and energy for a particle in 1-D box of length 1. (b) Obtain the Hamiltonian for simple harmonic oscillator. Prove that the operator p_{x} (h/2ri) is Hermitian. (8) (c) The wavenumber of the fundamental vibrational transition of ${ }^{35} \mathrm{Cl}_{2}$ is 564.9 cm^{-1}. Calculate the force constant of the bond (mass of ${ }^{35} \mathrm{Cl}=34.9688 \mathrm{u}$). (6)	K6	CO5

a) Apply variation theorem to predict the ground state energy of hydrogen atom using the trial wave function, $\psi=e^{-\alpha r}$.
b) Using Huckel molecular orbital theory, solve the secular determinants for ethylene and allyl radical. Calculate the total π-electron energy and the stabilisation energy.
c) Discuss the application of direct product principle to verify whether the $\pi \rightarrow \pi^{*}$ transition is allowed in HCHO molecule. The $\mathrm{C}_{2 \mathrm{v}}$ character table is given for reference.

$C_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(x z)$	$\sigma_{\mathrm{v}}{ }^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

