	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 60	0 034			
	M.Sc. DEGREE EXAMINATION – FOOD CHEMISTRY AND FOOD	PROCES	SING		
C B	FIRST SEMESTER – NOVEMBER 2022				
Nu	PFP1MC01 – CHEMISTRY OF MACRO AND MICRONUTRIE	INTS			
ת	ate: 23-11-2022 Dept No	$a\mathbf{v} \cdot 10$	0 Marks		
Time: 01:00 PM - 04:00 PM			J Marks		
	SECTION A				
Answ	ver ALL the Questions				
1	Define the following	(5×	(5×1 = 5)		
a)	Hysteresis.	K1	CO1		
b)	Retrogradation.	K1	CO1		
c)	Solubility.	K1	CO1		
d)	Saponification value.	K1	CO1		
e)	Turbidity point of lipids.	K1	CO1		
2	Multiple Choice Questions	(5×	(5×1 = 5)		
a)	The activity value of pure water is	K2	CO1		
	a. 0 b. 1.0 c. 0.1				
b)	An example of trisaccharide is	K2	CO1		
	a. sucrose b. maltose c. raffinose				
c)	Cephalin is an example for a	K2	CO1		
	a. compound lipid b. unsaturated fatty acid c. derived lipid				
d)	An essential amino acid is	K2	CO1		
	a. asparagine b. threonine c. glutamine				
e)	The secondary lipid oxidation product is	K2	CO1		
	a. aldehyde b. alcohols c. ethers				
	SECTION B				
	Answer any THREE of the following in 500 words	(3×10) = 30)		
3	Demonstrate the adsorption and desorption isotherms with a neat diagram.	K3	CO2		
4	Illustrate gelatinization and factors affecting gelatinization with a suitable flowchar	rt. K3	CO2		
5	Elaborate on Lowry-Bronsted and Lewis acid-base theory.	K3	CO2		
6	a) Explain the primary and secondary structural analysis of protein.	K3	CO2		
	b) Modify the structure of protein by alkylation and acylation reaction. (5+5	5)			
7	Describe the various changes that occur due to effect of frying fats.	K3	CO2		
SECTION C					

Answer any TWO of the following in 500 words (2					
8	Illustrate the viscous property and stability of polysaccharides and their influence in	K4	CO3		
	food and beverages.				
9	Outline the factors that affect the solubility of minerals in aqueous medium.	K4	CO3		
10	Classify lipids. Describe the hydrolysis and oxidation reaction of lipids.	K4	CO3		
11	a. Explain the three different types of enzyme catalysed inhibition reactions.	K4	CO3		
	b. Analyse the effect of temperature on protein denaturation. $(9 + 3.5)$				
	SECTION D				
Answer any ONE of the following in 1000 words (1×15 = 15)					
12	Write the preparation and applications of native and modified starches in food	K5	CO4		
	products.				
13	Compare the advantages and disadvantages of endogenous enzymes in food	K5	CO4		
	processing industries with any three examples.				
	SECTION E				
Ans	wer any ONE of the following in 1000 words	$(1 \times 20 = 20)$			
	a. Explain the types of antioxidants and the quenching mechanism in lipids.				
14	b. Derive Michaleis -Menten equation for the determination of kinetics of enzyme	K6	CO5		
	catalysed reaction. (10+10)				
15	Summarize the sources, functions, deficiency, stability and mode of degradation of	K6	CO5		
	Riboflavin.	ĸo	005		
 @@@@@@@					