LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FIRST SEMESTER – **NOVEMBER 2022**

UCH 1501 – BASIC CONCEPTS IN INORGANIC CHEMISTRY

Date: 24-11-2022 De

Dept. No.

Max.: 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION - A

Ansv	Answer ALL the Questions in one or two sentences					
1.	Fill in the blanks	(5 x 1	$(5 \times 1 = 5)$			
a)	The amount of energy released when an isolated gaseous atom captures an electron is known as	K1	CO1			
b)	Addition of an electron is known as	K 1	CO1			
c)	Electronegativity of fluorine is than chlorine.	K 1	CO1			
d)	Atomic orbitals which have the symmetry about the bond axis are called	K1	CO1			
e)	Molecular formula of bleaching powder is	K1	CO1			
2.	Choose the correct answer for the following	(5 x 1	$(5 \times 1 = 5)$			
a)	The correct electronic configuration for chromium atom is	K1	CO1			
b)	The conjugate acid of OH ⁻ in the following reaction is: $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ (i) NH ₃ (ii) H ₂ O (iii) NH ₄ ⁺ (iv) OH ⁻	K1	CO1			
c)	The shape of XeF ₄ is (i) tetrahedral (ii) square planar (iii) triangle (iv) circle	K1	CO1			
d)	Which is not the characteristics of metallic bonds?(i) strength(ii) ductility(iii) lustre(iv) non-conductors of electricity	K1	CO1			
e)	The most important oxidation state of chlorine is (i) -1 (ii) +1 (iii) +III (iv) +V	K1	CO1			
3.	Match the following	(5 x 1	1 = 5)			
a)	Hard acid reduction reaction	K2	CO1			
b)	Hard base Pb and Tl	K2	CO1			
c)	Sodium in liq. NH_3 CO and O_2^{2+}	K2	CO1			
d)	Inert pair effect H ⁺ and Li ⁺	K2	CO1			
e)	Isoelectronic species NH ₃ and H ₂ O	K2	CO1			
4.	Define the following	(5 x)	1 = 5)			
a)	Ionic radii	K2	CO1			
b)	Aprotic solvents	K2	CO1			

	LTL	rid orbitals		K)	CO1
c)		rid orbitals		K2	CO1
d)	Conduction band			K2	CO1
e)	Pseu	dohalides		K2	CO1
		SECTION - B	1		
Ansv	wer ar	ny TWO of the following	(2	x 10 :	= 20)
5.	(a)	Illustrate the variation of electron affinity and covalent radii of elements in the periodic table.	(5)	K3	CO2
	(b)		(5)	К3	CO2
6.	(a)	Determine the oxidation number of S and O in $S_3O_6^{2-}$ and $S_2O_3^{2-}$	(4)	K3	CO2
	(b)	Show that water is a levelling solvent and acetic acid is a differentiating solvent for protonic acids.	(6)	K3	CO2
7.	(a)	Draw the Lewis electron dot structures of the following molecules. i) CO ₂ ii) H ₂ O iii)Cl ₂	(5)	K3	CO2
	(b)	Compare Sidgwick-Powell theory with VSEPR theory.	(5)	K3	CO2
8.	(a)	Discuss the preparation, any two properties and structure of I_2O_5 .	(5)	K3	CO2
	(b)	Apply any one theory of bonding to predict the structure of (i) ClF and (ii) ClF ₃ .	(5)	K3	CO2
		SECTION - C			
Ansy	wer at	ny TWO of the following	(2 x 10) = 20)
9.	(a)		(5)	K4	CO3
		electronegativity of the atom.			
	(b)	effect	(5)	K4	CO3
10.	(a)	Compare the merits and demerits of Arrhenius and Usanovich theories for acids and bases.	(5)	K4	CO3
	(b)	Analyse liquid ammonia as an effective non-aqueous solvent for (i) precipitation reactions (ii) acid base reaction.	(5)	K4	CO3
11.	(a)		(6)	K4	CO3
	(b)	Predict the products for the following reactions: (i) $Cl_2 + NaOH \rightarrow ?$ (ii) $ClF_3 + MgO \rightarrow ?$	(4)	K4	CO3
12.	(a)		(5)	K4	CO3
	(b)	-	(5)	K4	CO3

		SECTION - D					
Answer any ONE of the following				$(1 \times 20 = 20)$			
13.	(a)	Summarize the salient features of modern periodic table.	(5)	K5	CO4		
ŀ	(b)	Using the postulates of valance bond theory, explain the	(5)	K5	CO4		
		geometry of BX_3 molecule, where $X = F$ or Cl					
ŀ	(c)	State HSAB principle. With the help of HSAB principle, predict	(10)	K5	CO4		
	1	(i) the feasibility of reaction between LiI and CsF and (ii)					
		stability of compounds.					
14.	(a)	Write a method of preparation of HOCl and HClO ₂ and indicate the oxidation state of chlorine in these compounds.	(4)	K5	CO4		
	(b)	Justify the following statements with the suitable examples:	(6)	K5	CO4		
	l	(i) Multiple bonds do not grossly influence the geometry of a					
		molecular species.(ii) Lone pair of electrons repel the neighbouring electron pairs					
	l	more strongly than bond pair of electrons.					
ľ	(c)	Evaluate the bond order, stability and magnetic properties of CO	(10)	K5	CO4		
	L	molecule using the qualitative molecular orbital energy diagram.					
		SECTION - E					
Ansy	wer a	ny ONE of the following	((1 x 20	= 20)		
15.	(a)	Mention the rules for arranging the electrons in an orbital.	(5)	K6	CO5		
	(b)	Discuss in detail the hybridization and geometry of the	(5)	K6	CO5		
	l	following molecules. (i) BeX ₂ (ii) NH ₃					
ŀ	(c)	Write the rules for assigning oxidation number of an element.	(10)	K6	CO5		
	l	Write the balanced equation for the following reaction:					
	l	$K_2Cr_2O_7 + KI + H^+ \rightarrow K^+ + Cr_3^+ + I_2 + H_2O$					
16.	(a)	Explain the salient features of band theory. How is it useful in	(8)	K6	CO5		
	l	explaining the metallic properties?					
-	(b)	Write the MO electronic configuration and bond order for N ₂ ,	(7)	K6	CO5		
		N_2^+ , N_2^- and N_2^2 -molecules. Arrange the species in the					
		increasing order of their stability.					
		Discuss the principle of iodometry and iodimetry titrations.	(5)	K6	CO5		
1			(5)	V6			

@@@@@@@