LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2022
UCH 3503 - THERMODYNAMICS

Date: 03-12-2022
Time: 09:00 AM - 12:00 NOON

SECTION A

Answer ALL the Questions in one or two sentences

1.	Fill in the blanks	($5 \times 1=5$)	
a)	The__ of an ideal gas is proportional to its absolute temperature.	K1	CO1
b)	If the heat of formation of CO_{2} is $-94 \mathrm{kcal} \mathrm{mol}^{-1}$, then the enthalpy of CO_{2} is \qquad .	K1	CO1
c)	For an isochoric process, $\Delta \mathrm{S}_{\mathrm{v}}=\ldots \ldots \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$.	K1	CO1
d)	The equilibrium constant is affected by change in	K1	CO1
e)	The expression for rotational partition function ($\mathrm{q}_{\mathrm{rot}}$) is	K1	CO1
2.	Choose the correct answer	($5 \times 1=5$)	
a)	In the ideal gas equation $\mathrm{PV}=\mathrm{nRT}$ (i) n is the number of molecules of a gas (ii) n is the number of moles of a gas (iii) P is the pressure of the one mole of a gas (iv) V is the volume of one mole of a gas	K1	CO1
b)	Heat of reaction is independent of \qquad (i) temperature (ii) pressure (iii) physical state (iv) path adopted	K1	CO1
c)	If a process is both endothermic and spontaneous, then (i) $\Delta \mathrm{S}>0$ (ii) $\Delta \mathrm{S}<0$ (iii) $\Delta \mathrm{H}<0$ (iv) $\Delta \mathrm{G}>0$	K1	CO1
d)	$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g}) ; \Delta \mathrm{H}=+\mathrm{ve}$, the reaction \qquad (i) increases by pressure (ii) occurs at 1000 atm pressure (iii) occurs at high temperature (iv) occurs at high pressure and temperature	K1	CO1
e)	\qquad describes the quantum state of individual particle in the system. (i) microstate (ii) macrostate iii) thermodynamic (iv) equilibrium	K1	CO1
3.	Choose the correct answer	($5 \times 1=5$)	
a)	Which among the following is not an intensive property? (i) boiling point (ii) refractive index (iii) Molarity (iv) volume	K2	CO1
b)	For an ideal gas, Joule-Thomson coefficient is \qquad (i) positive (ii) negative (iii) zero (iv) infinity	K2	CO1
c)	Unit of molar entropy is \qquad (i) $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ (ii) $\mathrm{J} \mathrm{mol}^{-1}$ (iii) $\mathrm{J} \mathrm{K} \mathrm{mol}^{-1}$ (iv) $\mathrm{J}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	K2	CO1
d)	Le Chatelier's principle is applicable to \qquad (i) heterogeneous reaction (ii) homogenous reaction (iii) irreversible reaction (iv) system in equilibrium	K2	CO1
e)	The value of $\ln 10$! is (i) 230 (ii) 13 (iii) 23 (iv) 130	K2	CO1

4.	Match the following			($5 \times 1=5$)	
a)	At constant volume	- $\quad \mathrm{K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{r}}$		K2	CO1
b)	A reaction has a $+\Delta \mathrm{G}$	Boyle's law		K2	CO1
c)	At equilibrium	- $\quad \mathrm{q}=0$		K2	CO1
d)	In adiabatic process	- Isochoric		K2	CO1
e)	At constant temperature	- Non-spontaneous process		K2	CO1
SECTION B					
Answer any TWO of the following			$(2 \times 10=20)$		
5.	(a)	Discuss the different types of molecular velocities.	(5)	K3	CO2
	(b)	Calculate the pressure exerted by one mole of carbon dioxide gas in a $1.32 \mathrm{dm}^{3}$ vessel at $48^{\circ} \mathrm{C}$ using van der Waals gas. The van der constants are $\mathrm{a}=3.59 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-2}$ and $\mathrm{b}=0.0427 \mathrm{dm}^{3} \mathrm{~mol}^{-1}, \mathrm{R}=0.08206 \mathrm{dm}^{3}$ $\operatorname{atm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.	(5)	K3	CO 2
6.	(a)	Show that $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$.	(5)	K3	CO 2
	(b)	Obtain the following expression for Joule-Thomson coefficient: $\mu_{J T}=\frac{d T}{d P}=-\frac{(\partial H / \partial P)_{T}}{C_{P}}$	(5)	K3	CO 2
7.		Derive K_{p} and K_{c} for $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. Using Le Chatelier's principle, explain the effect of pressure on the above equilibrium.	(10)	K3	CO 2
8	(a)	Derive any one Maxwell's relations between thermodynamic quantities.	(5)	K3	CO 2
	(b)	State and explain Nernst heat theorem.	(5)	K3	CO2
SECTION C					
Answer any TWO of the following			$(2 \times 10=20)$		
9.	(a)	Explain the effect of temperature on Maxwell's distribution of molecular velocities.	(5)	K4	$\mathrm{CO} 3$
	(b)	Derive Kirchoff's equation.	(5)	K4	$\mathrm{CO} 3$
10.		With the help of Carnot cycle, Show that $\mathrm{w}=\mathrm{q}_{2}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) / \mathrm{T}_{2}$.	(10)	K4	CO3
11.	(a)	Write any two applications of bond energy.	(5)	K4	CO3
	(b)	Show the relationship between K_{p} and K_{c}. Calculate K_{p} for the given reaction having K_{c} value of $49 \mathrm{~mol} \mathrm{dm}{ }^{3}$ at $27^{\circ} \mathrm{C}$. $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	(5)	K4	CO3
12.		List the major assumptions of Maxwell-Boltzmann statistics. Explain the relation between energy and partition function.	(10)	K4	CO3
SECTION D					
Answer any ONE of the following			($1 \times 20=20$)		
13.	(a)	Explain the principle of equipartition of energy.	(5)	K5	CO4
	(b)	State the Hess's law of constant heat summation. Explain its applications.	(10)	K5	CO 4
	(c)	Derive Gibbs-Helmholtz equation.	(5)	K5	CO4
14.	(a)	Write notes on thermodynamic probability and macrostate. State the Planck and Lewis-Randall formulations of third law of thermodynamics.	(5)	K5	CO 4
	(b)		(5)	K5	CO4

SECTION E

Answer any ONE of the following

$(1 \times 20=20)$

15.	(a)	Summarize the postulates of kinetic theory of gases and derive the expression for kinetic gas equation.	(8)	K6	CO5
	(b)	Write short notes on the following: (i) Exact and inexact differentials (ii) Concept of enthalpy	(7)	K6	CO 5
	(c)	Show that $\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}$.	(5)	K6	CO5
16.	(a)	Explain the thermodynamic working principle of a refrigerator.	(5)	K6	CO5
	(b)	Write in detail the effect of temperature and pressure on the following equilibrium using Le Chatelier's principle: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad ; \Delta \mathrm{H}=+59.0 \mathrm{~kJ}$	(5)	K6	CO5
	(c)	Write the steps involved in the determination of absolute entropy of solids, liquids and gases?	(10)	K6	CO 5

$\& \& \& \& \& \& \& \& \& \&$

