LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

THIRD SEMESTER - NOVEMBER 2022

UCH 3503 - THERMODYNAMICS

Date: 03-12-2022	Dept. No.	Max. : 100 Marks
Time: 09:00 AM - 12:00 NO	ON	

	SECTION A			
Ansv	ver ALL the Questions in one or two sentences			
1.	Fill in the blanks	$(5 \times 1 = 5)$		
a)	The of an ideal gas is proportional to its absolute temperature.	K1	CO1	
b)	If the heat of formation of CO_2 is -94 kcal mol^{-1} , then the enthalpy of CO_2 is	K1	CO1	
c)	For an isochoric process, $\Delta S_v = \underline{\qquad} \ln (T_2/T_1)$.	K1	CO1	
d)	The equilibrium constant is affected by change in	K 1	CO1	
e)	The expression for rotational partition function (q _{rot}) is	K 1	CO1	
2.	. Choose the correct answer		$(5 \times 1 = 5)$	
a)	In the ideal gas equation PV = nRT (i) n is the number of molecules of a gas (ii) n is the number of moles of a gas (iii) P is the pressure of the one mole of a gas (iv) V is the volume of one mole of a gas	K1	CO1	
b)	Heat of reaction is independent of (i) temperature (ii) pressure (iii) physical state (iv) path adopted	K1	CO1	
c)	If a process is both endothermic and spontaneous, then (i) $\Delta S > 0$ (ii) $\Delta S < 0$ (iii) $\Delta H < 0$ (iv) $\Delta G > 0$	K1	CO1	
d)	$A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$; $\Delta H = +ve$, the reaction (i) increases by pressure (ii) occurs at 1000 atm pressure (iii) occurs at high temperature (iv) occurs at high pressure and temperature	K1	CO1	
e)	describes the quantum state of individual particle in the system. K1 C			
	(i) microstate (ii) macrostate iii) thermodynamic (iv) equilibrium			
3.	Choose the correct answer		$(5 \times 1 = 5)$	
a)	Which among the following is not an intensive property? (i) boiling point (ii) refractive index (iii) Molarity (iv) volume	K2	CO1	
b)	For an ideal gas, Joule-Thomson coefficient is (i) positive (ii) negative (iii) zero (iv) infinity	K2	CO1	
c)	Unit of molar entropy is (i) J K ⁻¹ mol ⁻¹ (ii) J mol ⁻¹ (iii) J K mol ⁻¹ (iv) J ⁻¹ K ⁻¹ mol ⁻¹	K2	CO1	
d)	Le Chatelier's principle is applicable to	K2	CO1	
e)	The value of ln 10! is (i) 230 (ii) 13 (iii) 23 (iv) 130	K2	CO1	

4.	Mat	ch the following		(5 x	1 = 5)
a)	At c	onstant volume - $K_{\mathrm{f}} = K_{\mathrm{r}}$		K2	CO1
b)	A reaction has a $+\Delta G$ - Boyle's law			K2	CO1
c)	At equilibrium - $q = 0$		K2	CO1	
d)	In adiabatic process - Isochoric		K2	CO1	
e)	At c	onstant temperature - Non-spontaneous process		K2	CO1
		SECTION B		1	
Ansv	ver an	y TWO of the following	(2	x 10 =	20)
5.	(a)	Discuss the different types of molecular velocities.	(5)	K3	CO2
	(b)	Calculate the pressure exerted by one mole of carbon dioxide gas in a $1.32~\rm dm^3$ vessel at 48°C using van der Waals gas. The van der constants are a = $3.59~\rm dm^3$ atm mol ⁻² and b = $0.0427~\rm dm^3$ mol ⁻¹ , R= $0.08206~\rm dm^3$ atm K ⁻¹ mol ⁻¹ .	(5)	K3	CO2
6.	(a)	Show that $C_p - C_v = R$.	(5)	К3	CO2
	(b)	(b) Obtain the following expression for Joule-Thomson coefficient: (5) K3 CO2 $\mu_{JT} = \frac{dT}{dP} = -\frac{(\partial H/\partial P)_T}{C_P}$			
7.		Derive K_p and K_c for $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$. Using Le Chatelier's principle, explain the effect of pressure on the above equilibrium.	(10)	К3	CO2
8	(a)	Derive any one Maxwell's relations between thermodynamic quantities.	(5)	K3	CO2
	(b)	State and explain Nernst heat theorem.	(5)	K3	CO2
		SECTION C			
Ansv	ver an	y TWO of the following	(2	x 10 =	20)
9.	(a)	Explain the effect of temperature on Maxwell's distribution of molecular velocities.	(5)	K4	CO3
	(b)	Derive Kirchoff's equation.	(5)	K4	CO3
10.		With the help of Carnot cycle, Show that $w = q_2 (T_2-T_1)/T_2$.	(10)	K4	CO3
11.	(a)	Write any two applications of bond energy.	(5)	K4	CO3
	(b)	Show the relationship between K_p and K_c . Calculate K_p for the given reaction having K_c value of 49 mol dm ³ at 27°C. $2SO_3(g) \Rightarrow 2SO_2(g) + O_2(g)$	(5)	K4	CO3
12.		List the major assumptions of Maxwell-Boltzmann statistics. Explain the relation between energy and partition function.	(10)	K4	CO3
		SECTION D			
		y ONE of the following		x 20 =	,
13.	(a)	Explain the principle of equipartition of energy.	(5)	K5	CO4
	(b)	State the Hess's law of constant heat summation. Explain its applications.	(10)	K5	CO4
	(c)	Derive Gibbs-Helmholtz equation.	(5)	K5	CO4
14.	(a)	Write notes on thermodynamic probability and macrostate.	(5)	K5	CO4
	(b)	State the Planck and Lewis-Randall formulations of third law of thermodynamics.	(5)	K5	CO4

	(c)	Explain Van't Hoff reaction isotherm. The standard free energy change ΔG^o of a reaction at 298 K is 28.5 kJ. Calculate the value of the equilibrium constant (K_{eq}).	(10)	K5	CO4
		SECTION E			
Ans	Answer any ONE of the following $(1 \times 20 = 20)$				= 20)
15.	(a)	Summarize the postulates of kinetic theory of gases and derive the expression for kinetic gas equation.	(8)	K6	CO5
	(b)	Write short notes on the following: (i) Exact and inexact differentials (ii) Concept of enthalpy	(7)	K6	CO5
	(c)	Show that $P_1V_1^{\gamma} = P_2V_2^{\gamma}$.	(5)	K6	CO5
16.	(a)	Explain the thermodynamic working principle of a refrigerator.	(5)	K6	CO5
	(b)	Write in detail the effect of temperature and pressure on the following equilibrium using Le Chatelier's principle: $N_2O_4(g) \rightleftharpoons 2NO_2\left(g\right) \qquad ; \Delta H = +59.0 \text{ kJ}$	(5)	K6	CO5
	(c)	Write the steps involved in the determination of absolute entropy of solids, liquids and gases?	(10)	K6	CO5

&&&&&&&&&&