LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - NOVEMBER 2022

UCH 4501 - ELECTROCHEMISTRY

Date: 26-11-2022	Dept. No.	Max. : 100 Marks

Time: 09:00 AM - 12:00 NOON

PART-A

Answer ALL questions.

 $(10 \times 2 = 20 \text{ Marks})$

- 1. What is meant by standard electrode potential?
- 2. The potential for $Fe^{3+}|Fe^{2+}|$ half-cell is ± 0.750 V relative to the standard hydrogen electrode. What is its potential when using a saturated calomel electrode ($E^{\circ}=0.2444$ V).
- 3. What is a reversible cell? Give an example.
- 4. What is liquid junction potential? How can it be minimized?
- 5. Write any two advantages of conductometric titration.
- 6. Define transport number.
- 7. Distinguish between strong and weak electrolytes.
- 8. Calculate the ionic strength of 0.01 M aqueous solution of CuSO₄ at 298K.
- 9. Write Ilkovic equation and its use.
- 10. What is concentration polarization?

PART-B

Answer any EIGHT questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 11. Describe the construction and working of a standard calomel electrode.
- 12. Calculate the electrode reduction potentials of the following single electrode at 25°C.

$$Sn|Sn^{2+}$$
 (a = 0.01M)

$$E^{\circ}_{Sn^{2+}|Sn} = -0.14 \text{ V}$$

- 13. Derive the Nernst equation for measuring electrode potential.
- 14. How is the pH of a solution determined using a quinhydrone electrode?
- 15. Discuss the principle of potentiometric titration.
- 16. State and explain Kohlrausch's law.
- 17. At 25°C, the transport numbers of H⁺ ions in HCl and CH₃COO⁻ ions in CH₃COONa are 0.81and 0.47 respectively. The equivalent conductance at infinite dilution of HCl and CH₃COONa are 426 Ω^{-1} cm²equi⁻¹ and 91.0 Ω^{-1} cm²equi⁻¹ respectively. Calculate the equivalent conductance of acetic acid at infinite dilution.
- 18. Explain the principle of conductometric titration of strong acid with strong base.
- 19. Describe electrophoretic effect and asymmetric effect.
- 20. Discuss Arrhenius theory of electrolytic dissociation.
- 21. Describe the electrochemical theory of corrosion.
- 22. Write the advantages and disadvantages of dropping mercury electrode in polarography.

PART-C

Answer any FOUR questions.

 $(4 \times 10 = 40 \text{ Marks})$

- 23. a) Explain the applications of electrochemical series.
 - b) Calculate the standard free energy ΔG° for the reaction $Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$ at 298 K. The E°_{cell} at this temperature is 1.10 V. Is the cell reaction spontaneous or not? (6+4)
- 24. Derive an expression for the EMF of a concentration cell with transference.
- 25. How are ΔH , ΔS , ΔG and K determined from EMF data?
- 26. How is transference number of ions determined using a moving boundary method?
- 27. Discuss the Debye-Huckel theory of strong electrolytes.
- 28. Explain the working principle and applications of polarography.