LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS
 FIRST SEMESTER - APRIL 2023
 PPH1MC01 - CLASSICAL MECHANICS

Date: 29-04-2023
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A			
Answer ALL the questions			
1	Answer the following	($5 \times 1=5$)	
a)	When a horse pulls a cart, which is the force that helps the horse to move forward?	K1	CO1
b)	Define configuration space.	K1	CO1
c)	What are generalised co-ordinates?	K1	CO1
d)	Write down Hamilton- Jacobi equation.	K1	CO1
e)	If a lighter object and a heavier object have the same kinetic energy, which one will have the greater momentum?	K1	CO1
2	Answer the following	($5 \times 1=5$)	
a)	Check whether the force $\mathbf{F}=\mathrm{x}^{2} \mathrm{yzi}-\mathrm{xyz}^{2} \mathbf{k}$ is conservative or non-conservative.	K2	CO1
b)	What is Inertia tensor?	K2	CO1
c)	Show that the work done by force of constraint in a rigid body is zero.	K2	CO1
d)	With examples, classify constraints.	K2	CO1
e)	State the conservation theorem for angular momentum for a system of N-particles.	K2	CO1
SECTION B			
	Answer any THREE of the following in 500 words	$(3 \times 10=30)$	
3	State D'Alembert's principle. What is its importance?	K3	CO3
4	Explain the terms :Normal frequencies, Normal modes of vibrations and Normal co ordinates of a coupled system.	K3	CO3
5	Prove that $[\mathrm{F}+\mathrm{K}, \mathrm{G}]=[\mathrm{F}, \mathrm{G}]+[\mathrm{K}, \mathrm{G}]$.	K3	CO3
6	The moment of inertia is the rotational analogue of mass of a body, Explain.	K3	CO 3
7	Using Hamilton's canonical equations, derive the equation of motion of a particle moving in a force field in which the potential is given by $V=-k / r$, where k is positive.	K3	CO3
SECTION C			
Answer any TWO of the following in 500 words $\quad(2 \times 12.5=25)$			
8	The Lagrangian of a system in terms of generalised co-ordinates x and y is given by $L=\dot{x} \dot{y}-x y$. Find Lagrangian equations of motion.	K4	CO3
9	Discuss the problem of scattering of a charged particle by a coulomb field and obtain Rutherford formula for scattering cross section.	K4	CO3
10	Describe any two applications of Legendre transformation in mechanics.	K4	CO3
11	Discuss in detail the vibrations of a linear triatomic molecule.	K4	CO3

SECTION D

Answer any ONE of the following in 1000 words

Show that the K.E. of a rotating rigid body in a co-ordinate system of principal axes is given by $T=1 / 2\left(I_{1} \omega_{1}{ }^{2}+I_{2} \omega_{2}{ }^{2}+I_{3} \omega_{3}{ }^{2}\right)$

When is Hamilton -Jacobi theory useful? Discuss the harmonic oscillator problem using Hamilton-Jacobi method.

SECTION E

Answer any ONE of the following in $\mathbf{1 0 0 0}$ words

What is Hamilton's principle? Derive Lagrange's equation from Hamilton's principle for a conservative system. Derive equation of motion for a particle moving under a central force.

Consider the case of two coupled pendulums. Determine
a. T and V matrices.
b. The normal frequencies.

15
c. The normal co-ordinates.

K6
CO 5
d. The equation of motion.
e. The eigen-vectors.
f. The general solution.

