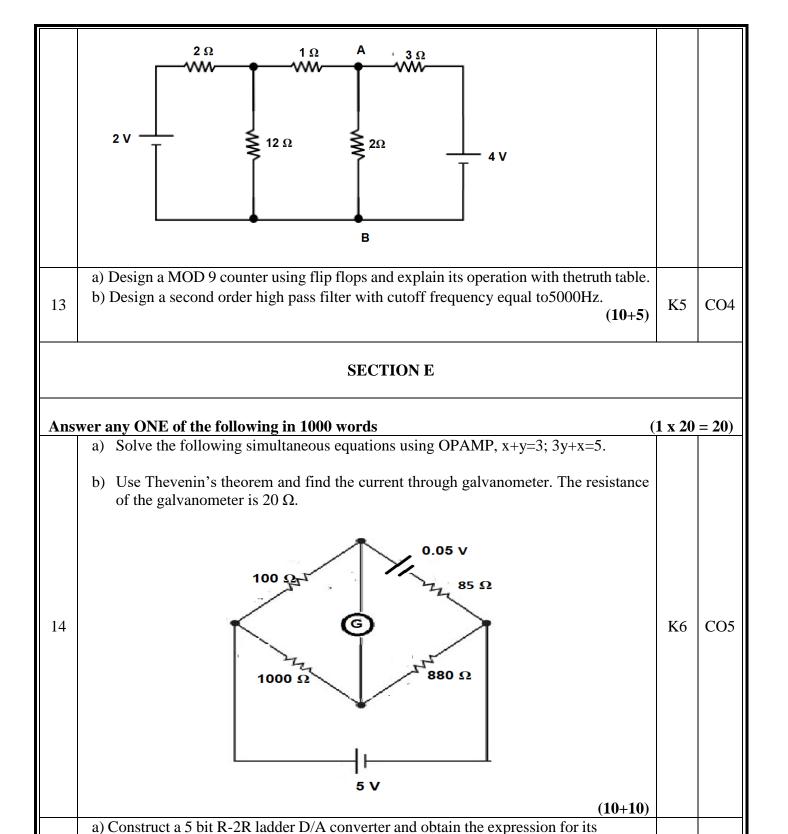
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – PHYSICS

FIRST SEMESTER – **APRIL 2023**


PPH1MC04 - ELECTRONICS I

Date: 04-05-2023 Dept. No. Max. : 100 Marks

Time: 09:00 AM - 12:00 NOON

SECTION A					
Answer ALL the questions					
1	MCQ	$(5 \times 1 = 5)$			
a)	When 2Ω , 500Ω , 1000Ω and 10000Ω are connected in parallel, the equivalent resistance will be a) Greater than 1000Ω and less than 10000Ω				
	b) Greater than 2 Ω less than 500Ω c) Less than 2Ω d) Mean of 500Ω and 1000Ω	K1	CO1		
b)	Which semiconductor device acts like a diode and two resistors? a) SCR b) Triac c) Diac d) UJT	K1	CO1		
c)	In a 4 bit Johnson's counter the total number of output states or bit patterns are a) 1 b) 3 c) 4 d) 8	K1	CO1		
d)	What is the output waveform for a sine wave input? The state of the content of t	K1	CO1		
e)	The difference between analog voltage represented by two adjacent digital codes of a digital to analog converter is a) accuracyb)resolutionc)quantization d) precision	K1	CO1		
2	Fill in the blanks $(5 \times 1 = 5)$				
a)	The algebraic sum of all IR drops and EMFs in any closed loop of a network is	K2	CO1		
b)	In MOSFETs, gate and channel are from each other.	K2	CO1		
c)	EPROM stands for	K2	CO1		
d)	The gain of a non-inverting amplifier is Av =	K2	CO1		

e)	The output of a particular opamp increases 9V in 12µs. The slew rate is	K2	CO1		
SECTION B					
Answer any THREE of the following in 500 words (3 x 10 = 30)					
	2Ω 1Ω I_1 6Ω I_2 I_2 I_2 I_2 I_2 I_2				
3	Calculate the voltage that must be connected across the terminals ab such that the voltage	К3	CO2		
	across the 2 Ω resistor is 10V. Determine the voltage across the 6 Ω resistor and hence determine the currents I_1 and I_2 and verify $I = I_1 + I_2$.				
4	Discuss the construction and operation of UJT.	K3	CO2		
5	Explain the construction and working of a decade counter.	K3	CO2		
6	a) Discuss the construction and working of an OPAMP as an invertingamplifier. b) Design an inverting amplifier with gain 2.5. (8+2)	К3	CO2		
7	With a neat diagram explain the working of dual slope A/D converter.	K3	CO2		
SECTION C Answer any TWO of the following in 500 words (2 x 12.5 = 25)					
8	In the current I using superposition theorem. $\frac{10 \Omega}{100 V}$	K4	CO3		
9	Explain the construction and characteristics of a SCR.	K4	CO3		
10	Explain with a neat diagram how an OPAMP can be used as an astablemultivibrator.	K4	CO3		
11	Explain the construction and working of OPAMP as integrator and differentiator. (6.5+6)	K4	CO3		
SECTION D					
Answer any ONE of the following in 1000 words (1 x 15 = 15)					
12	Use Norton's theorem to find the current through the resistor connected between AB.	K5	CO4		

############

b) Determine the output voltage for i) 10101 ii) 11000 iii) 01010 iv) 00111 v) 11101 vi)

full scale voltage, if $R_f = 10k\Omega$, $R = 20k\Omega$ and 0=0V, 1=5V.

output voltage.

15

CO₅

K6

(8+12)