	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
M.Sc. DEGREE EXAMINATION – PHYSICS		AMINATION – PHYSICS		
	FIRST SEMESTER – 1	NOVEMBER 2023		
PPH1MC02 – ELECT		TRODYNAMICS		
]	Date: 03-11-2023 Dept. No. Max. : 100 Marks			
,	Time: 01:00 PM - 04:00 PM			
SECTION A – K1 (CO1)				
	Answer ALL the questions	(5 x 1 = 5)		
1	Fill in the blanks			
a)	The electric scalar potential is governed by			
b)				
c)	Larmor formula provides for the rate at which energy			
d)	In coaxial cables TEM waves have electric	and magnetic field components.		
e)	The covariant form expresses Maxwell's equation in	a manner that is consistent with		
	SECTION A – H	32 (CO1)		
	Answer ALL the questions	(5 x 1 = 5)		
2	Match the following			
a)	Divergence and Curl of B	i.Tensor algebra		
b)	Energy and momentum in electromagnetic waves	ii loss of guided waves as they propagate		
c)	Radiation reaction	iii. Poynting's theorem		
d)	Attenuation in wave guides	iv. Energy in the magnetic fields		
e)	Four vectors	v. Particle response to emitted radiation		
	SECTION B – F	K3 (CO2)		
	Answer any THREE of the following	$(3 \times 10 = 30)$		
3	Determine the power flow of a plane wave using the Poynting theorem.			
4	Explain the laws of conservation for relativistic energy and discuss the corresponding Compton scattering.			
5	a. Calculate the percentage concentration of a	rod moving with a velocity 0.8 c in a direction		
	inclined at 60° to its own length.			
	b. Find the velocity at which the mass of a parti	cle is double its rest mass. (6+4)		
6	Verify that the retarded potentials meet the requirements of the Lorentz gauge condition.			
7				
	opposite charges (+q and -q) separated by a distance	: d		
	SECTION C – F	K4 (CO3)		
	Answer any TWO of the following (2 x 12.5 = 25)			
8 Point out that TEM waves cannot occur in a hollow wave guide. Also show the				
	transmission line of inner and outer radius a and b respectively admit waves with $E_z = 0$ and $B_z = 0$			

0		
9 Find the potentials of a point charge moving with a constant velocity.		
10	(a) Establish the relation between the relativistic momentum and relativistic energy. (b) Show by direct application of Lorentz transformation $x^2 + y^2 + z^2 - c^2t^2$ is invariant. (6 + 6.5)	
11	Discuss the Lorentz transformation and 4-vectors, and elucidate the concept of the invariant interval.	
	SECTION D – K5 (CO4)	
Answer any ONE of the following (1 x 15 = 15)		
12	Appraise and prioritize the importance of Gauge Transformations and their interconnection with	
	Electromagnetic Potentials. Reframe the Concepts of Coulomb Gauge and Lorentz Gauge, Giving	
	priority to their significance.	
13	Derive an expression for the cut-off frequency of a rectangular waveguide.	
	SECTION E – K6 (CO5)	
1	Answer any ONE of the following (1 x 20 = 20)	
14 Design an explanatory framework for the multipole expansion theory of electrostatic period $f(1/2)$		
represented as a series of powers of (1/r).		
15 State and prove first and second uniqueness theorems.		