LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **PHYSICS**

THIRD SEMESTER - NOVEMBER 2023

PPH3ID01 – NANOSCIENCE

Date: 09-11-2023 Dept. No. Time: 01:00 PM - 04:00 PM

	SECTION A – K1 (CO1)
	Answer ALL the questions(5 x 1 = 5)
1.	Answer the following
a)	Distinguish nanoscience and nanotechnology.
b)	Recall surface plasmon resonance effect.
c)	Calculate the crystallite size of a nanocrystal by XRD radiation of wavelength 0.154 nm, full width at half maximum 0.5° located at 31.8° in the pattern.
d)	What is a buckyball?
	(a) Carbon-60(b) Carbon-111(c) Carbon-4(d) Carbon-20
e)	Nanomaterials with same dimensions but with different structure might have different physica properties. (True/False)
	SECTION A – K2 (CO1)
	Answer ALL the questions(5 x 1 = 5)
2.	MCQ
a)	Elemental iodine (I_2) is a solid at room temperature. What is the major attractive force that exists among the different I_2 molecules in the solid?
	a) covalent-ionic interactions b) london dispersion forces
	c) dipole-dipole attractions d) none of the above
b)	is a material produced by the incomplete combustion of heavy petroleum products.
	a) activated carbon b) charcoal c) carbon block d) graphite
c)	The synthesis of nanomaterials using the co-precipitation route is the method.
_	a) top-up & solid phase b) bottom-up & sedimentation c) top-up & chemical d) chemical
d)	The most commonly used anode X-ray source in XPS analysis is the
	a) Mg K α b) Al K α c) Ni L α d) both a) and b)
e)	emission is the emission of electrons induced by an applied electrostatic field.
	a) Thermal b) Field c) Electric d) Secondary
	SECTION B – K3 (CO2)
	Answer any THREE of the following in 300 words(3 x 10 = 30)
3.	Justify why materials change their properties at nanoscale with few examples.
4.	Elaborate the principle and working of physical vapour deposition method with a neat graphical schema.

Max.: 100 Marks

~		1
5.	a) Discuss the role of nanotechnology in energy sector.	
	b) What is Lennard-Jones potential? Explain its significance.	(5 + 5)
6.	a) How are semiconductor nanocomposites classified?	
	b) How are Langmuir-Blodgett films prepared?	(5 + 5)
7.	a) Discuss the working principle of X-ray photoelectron spectroscopy.	
	b) Illustrate the application of CNTs in fuel cell.	(5 + 5)
	SECTION C – K4 (CO3)	
	Answer any TWO of the following in 500 words	(2 x 12.5 = 25)
8.	Explain the electrical, magnetic, optical and thermal properties of nanostructured ma	terials.
9.	Illustrate the principle, essential components and operation of UV-Vis spectroscopy with a neat graphical scheme.	
10.	a) Compare the electronic band structure of 0D, 1D, and 2D nanomaterials.	
	b) Discuss the types and advantages of core-shell nanoparticles.	(6 + 6.5)
11.	a) How are metal oxide nanostructures synthesized using sol gel method?	
	b) The experimental data for the adsorption of nitrogen on silica at 77.3 K fit into a E The slope and intercept of a plot of $P/[V(P_0-P)]$ and P/P_0 are 2.88 x 10^{-2} cm ⁻³ and 9.3 The area of the cross section of the N ₂ molecule is 16.2 x 10–20 m ² . Calculate V _{mono} area of silica.	$87 \text{ x } 10^{-4} \text{ cm}^{-3}$.
	SECTION D – K5 (CO4)	
10	Answer any ONE of the following in 750 words	$(1 \times 15 = 15)$
12.	Classify nanomaterials based on dimensionality, quantum confinement and m necessary illustrations.	orphology with
13.	a) Write Brunauer-Emmett-Teller equation. Explain its application.	(7 + 8)
	b) How is energy dispersive spectroscopy performed for elemental analysis of nanon	naterials?
	SECTION E – K6 (CO5)	
1.4	Answer any ONE of the following in 1000 words	$(1 \times 20 = 20)$
14.	Review the principle, essential components and working of Transmission Electron M	i ana a a mu uvith
	a neat graphical representation. Mention few applications.	neroscopy with
15.		
15.	a neat graphical representation. Mention few applications.	
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in deposition.	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in deposition.	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in deposition.	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in deposition.	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in deposition.	chemical vapor
15.	a neat graphical representation. Mention few applications.a) Explain the nonbonding intermolecular forces with suitable equationsb) Discuss the synthesis of nanomaterials and the types of reactions involved in deposition.	chemical vapor