LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

Date: 29-04-2023 Dept. No.

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER – **APRIL 2023**

PST1MC01 - ADVANCED DISTRIBUTION THEORY

Max.: 100 Marks

	me: 09:00 AM - 12:00 NOON		
	SECTION A		
	Answer ALL the questions		
1	Answer the following /Definitions		
1		(5 x	1 = 5)
a)	Write the pdf of truncated Poisson truncated at '0' and obtain its moment generating function.	K1	CO1
b)	State the properties of a distribution function.	K1	CO1
c)	Let $(X_1, X_2) \sim BVE$, prove that X_1 and X_2 are independent if and only if $\lambda_{12}=0$.	K1	CO1
<u>d)</u>	Let $(X_1, X_2) \sim BVP(\lambda_1, \lambda_2, \lambda_{12})$. Find its probability generating function.	K1	CO1
e)	If X is Inverse Gaussian, show that 2X is also Inverse Gaussian.	K1	CO1
	True or False/ Answer the following / Definitions		
2		(5 v	1 – 5)
	Let X_1 , X_2 , X_3 be iid $N(\mu, \sigma^2)$ random variables. Then, $2X_1+3X_2-X_3$ and $3X_1-$	(3 X	1 = 5)
a)	X_2+3X_3 are independent. (TRUE/FALSE)	K2	CO1
b)	Write the joint pdf of i th and j th order statistics.	K2	CO1
c)	If X follows log-normal then prove that 1/X is also log normal.	K2	CO1
<u>d)</u>	Write any one difference between central and non-central distributions.	K2	CO1
e)	What are compound distributions?	K2	CO1
	SECTION B		
	Answer any THREE of the following (3)	x 10 =	30)
	Show that the Binomial distribution is a power series distribution. Obtain the MGF		
3	of a power series distribution. Also Obtain the recurrence relation for the cumulants	K3	CO2
	of power series distributions.	17.2	GO2
4	State and establish Skitovitch theorem regarding Normal distributions.	K3	CO2
5	Let X1,X2 be independent and identically distributed non negative, integer valued		
	random variables Then show that X_1 is geometric if and only if $Min\{X_1, X_2\}$ is geometric.	K3	CO2
6	geometric.		
6	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic	K3 K3	CO2 CO2
	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent.	K3	CO2
	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C	K3 K3	CO2
	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2)	K3 K3	CO2
	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2 a) Establish the pdf of Trinomial distribution. (5) b) Let $(X_1, X_2) \sim BB$ (n, p_1, p_2, p_{12}) then obtain the mean and variance of X_2 .	K3 K3	CO2
7	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2 a) Establish the pdf of Trinomial distribution. (5)	K3 K3	CO2 CO2 5 = 25)
7	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2 a) Establish the pdf of Trinomial distribution. (5) b) Let $(X_1, X_2) \sim BB$ (n, p_1, p_2, p_{12}) then obtain the mean and variance of X_2 .	K3 K3	CO2 CO2 5 = 25)
8	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2 a) Establish the pdf of Trinomial distribution. (5) b) Let $(X_1, X_2) \sim BB$ (n, p_1, p_2, p_{12}) then obtain the mean and variance of X_2 . (7.5) Let $X_1, X_2 X_n$ be a random sample from $f(x) = \alpha e^{-\alpha x}, x > 0, \alpha > 0$. Let	K3 K3 x 12.5 K4	CO2 CO2 S = 25)
7	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2 a) Establish the pdf of Trinomial distribution. (5) b) Let $(X_1, X_2) \sim BB$ (n, p_1, p_2, p_{12}) then obtain the mean and variance of X_2 . (7.5) Let $X_1, X_2 X_n$ be a random sample from $f(x) = \alpha e^{-\alpha x}, x > 0, \alpha > 0$. Let $D_{ik} = (n-k+1)[X_{(k)} - X_{(k-1)}]$ where $X_{(k)}$ denotes the k^{th} order statistic. Show that	K3 K3	CO2 CO2 5 = 25)
8	geometric. Derive the probability density function of non-central F-distribution. Let $X_1, X_2 X_n$ be iid $N(\mu, \sigma^2)$ random variables. Using the concept of Quadratic forms, show that the sample mean and the sample variance are independent. SECTION C Answer any TWO of the following (2 a) Establish the pdf of Trinomial distribution. (5) b) Let $(X_1, X_2) \sim BB$ (n, p_1, p_2, p_{12}) then obtain the mean and variance of X_2 . (7.5) Let $X_1, X_2 X_n$ be a random sample from $f(x) = \alpha e^{-\alpha x}, x > 0, \alpha > 0$. Let	K3 K3 x 12.5 K4	CO2 CO2 S = 25)

I		Let X_1, X_2 Xn be independent and identically distributed Normal variables with			
	11	mean zero and the variance σ^2 . Show that X'AX / σ^2 is distributed as chi-square if A	K4	CO3	
		is idempotent.			

SECTION D						
	Answer any ONE of the following					
12	State and prove Cochran's theorem.	K5	CO4			
13	If (X_1, X_2) has Bivariate Normal distribution then obtain the Marginal distribution of X_1 and the conditional distribution of X_1 given $X_2 = x_2$.	K5	CO4			
	SECTION E					
		x 20 = 2	20 = 20)			
14	 a) If (X₁, X₂) has Bivariate Poisson distribution then obtain the correlation between X₁ and X₂. (10) b) Evaluate the Mean and variance of truncated exponential distribution truncated at 5. (10) 	K6	CO5			
15	a) The distribution function of random variable X is given by, $F(x) = \begin{cases} 0; & x < -1 \\ \frac{x+2}{4} - 1; & -1 \le x < 1 \\ 1; & 1 \le x < \infty \end{cases}$ Decompose the distribution function. Find the mean and variance. Justify your Answer. b) Let $X \theta \sim B(n, \theta)$ and, $\theta \sim Beta_1(\alpha, \beta)$, where α, β are known. Find the compound distribution and Mean. (10)	K6	CO5			

\$\$\$\$\$\$\$