LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
i	M.Sc. DEGREE EXAMINATION – STATISTICS		
	SECOND SEMESTER – APRIL 2023		
S	PST2MC02 – TESTING STATISTICAL HYPOTHESIS		
F512MC02 - TESTING STATISTICAL IIIFOTHESIS			
г	Date: 04-05-2023 Dept. No. Max. : 100 Marks		
	Cime: 01:00 PM - 04:00 PM		
SECTION A – K1 (CO1)			
	Answer ALL the questions (5 x 1 = 5)		
1.	Answer the following		
a)	Explain the method of obtaining the most powerful test function using the concept of linear programming problem.		
b)	Let X be a random variable with pdf $f(x) = \begin{cases} \theta e^{-\theta x} & 0 < x < \infty, \theta > 0 \\ 0 & otherwise \end{cases}$.		
	Consider the problem of testing H_0 : $\theta = 1$ Vs H_1 : $\theta = 2$.		
	Define $\phi(x) = \begin{cases} 1 & if x \ge 1 \\ 0 & if x < 1 \end{cases}$. Find the level of the test.		
c)	When do we say a test function is consistent?		
d)	Explain Locally most powerful test.		
e)	What is the difference between parametric and non-parametric tests?		
SECTION A – K2 (CO1)			
	Answer ALL the questions(5 x 1 = 5)		
2.	Answer the following		
a)	Distinguish between randomized and non-randomized test.		
b)	State the Generalized Neyman-Pearson Theorem.		
c)	Prove that UMPT is UMPUT.		
d)	Write any two assumptions of Non parametric Methods.		
e)	Explain the concept of likelihood ratio test in regression analysis.		
SECTION B – K3 (CO2)			
	Answer any THREE of the following $(3 \times 10 = 30)$		
3.	Let β denote the power of a most powerful test of level α for testing simple hypothesis H ₀ against simple alternative H ₁ . Prove that (i) $\beta \ge \alpha$ and (ii) $\alpha < \beta$ unless $p_0 = p_1$.		
4.	Let X ₁ , X ₂ ,, X _n be iid B(1,p) random variables. Find the Most powerful test function of level α for testing H ₀ : $p = p_0$ Vs H_1 : $p = p_1$ ($p_1 > p_0$).		
5.	Show that a test is invariant if and only if it is a function of a maximal invariant statistic.		
6.	Let X ₁ , X ₂ ,, X _n be a random sample from N(μ, σ^2) $\sigma > 0$. Derive UMPUT for testing H ₀ : $\sigma = \sigma_0$		
	$(\sigma^2 = \sigma_0^2)$ Vs $H_1: \sigma \neq \sigma_0$, $(\sigma^2 \neq \sigma_0^2)$. Discuss the case when n=4, $\sigma_0 = 1, \alpha = 0$.		
7.	Do we require bounded completeness to prove similar tests to have Neyman structure? Explain.		

	SECTION C – K4 (CO3)	
	Answer any TWO of the following(2 x 12.5 = 25)	
8.	Derive a UMP test of level α for testing $H_0: \theta \leq \theta_0$ Vs $H_1: \theta > \theta_0$ for the family of densities	
	${f(x,\theta), \theta \in \Theta}$ that possess MLR in T(x). Also, show that the power function of the above testing problem increases in θ	
9.	Consider the one parameter exponential family of distributions. Obtain the UMPT of level α for testing the two-sided testing hypothesis.	
10.	Does UMPT exist always? Explain with an example.	
11.	Derive a likelihood ratio test for testing $\mu = \mu_0$ Vs $H_1: \mu \neq \mu_0$ when a random sample of size n is drawn from N(μ, σ^2).	
SECTION D – K5 (CO4)		
	Answer any ONE of the following (1 x 15 = 15)	
12.	 a. Consider the (k+1) parameter exponential family. Derive the conditional UMPU level α test for testing H₀: θ ≤ θ₀ against H₁: θ > θ₀. (10) b. Let X₁, X₂,, X_n be the random sample of size n from N(0, σ²), σ>0. For testing H₀: σ≤ σ₀ Vs H₁: σ >σ₀. Derive UMPT with level α. Examine whether the test is consistent. (5) 	
13.	If $X \sim P(\lambda_1)$ and $Y \sim P(\lambda_2)$ and are independent, then compare the two Poisson populations through UMPUT for $H_0: \lambda_1 \leq \lambda_2$ versus $H_1: \lambda_1 > \lambda_2$, by taking random sample from $P(\lambda_1)$ and $P(\lambda_2)$ of sizes 'm' and 'n' respectively.	
	SECTION E – K6 (CO5)	
	Answer any ONE of the following(1 x 20 = 20)	
14.	State and prove the Neyman – Pearson Fundamental lemma.	
15.	a. Let $X_1, X_2,, X_n$ be iid $N(\mu, \sigma^2)$ random variables. Derive the unconditional UMPUT of	
	level α for testing H ₀ : $\sigma^2 \le \sigma_0^2 \text{ Vs H}_1$: $\sigma^2 > \sigma_0^2$. (10)	
	b. Explain the applications and procedure of chi -square test. (5)	
	c. Obtain the test function for the testing the mixing proportion in the case of mixture	
	distributions. (5)	