LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034									
1	M.Sc. DEGREE EXAMINATION – STATISTICS								
SECOND SEMESTER - ADDII 2023									
B	SECOND SEMESTER - AFRIC 2023								
	PST2MC03 – CATEGORICAL DATA ANALYSIS								
Date: 06-05-2023 Dept. No. Max. : 100 Marks									
Т	Time: 01:00 PM - 04:00 PM								
	SECTION A K1 (CO1)								
	$(5 \times 1 = 5)$								
1	Answer ALL the questions (5 x 1 - 5)								
1. a)	Relative risk								
$\frac{a}{b}$	Logits								
$\frac{c}{c}$	Deviance								
d)	Log-linear mod	e1							
e)	Matched pairs	01.							
•)	Timenea pano.								
			SECTION	A – K2 (CO1)					
	Answer ALL t	he questions				$(5 \times 1 = 5)$			
2.	Fill in the blanks								
a)	quanti	fies the strength	n of association	between two e	vents.				
b)	Systematic component specifies the variables in the model.								
c)	In multinomial logistic regression the response variable is								
d)	All variables in a loglinear model are essentially								
e)		model does not	require margin	al homogeneity					
			SECTION	B – K3 (CO2)					
	Answer any THREE of the following $(3 \times 10 = 30)$								
3.	Explain differer	nt scales of mea	surements in de	etail.					
4.	a) Write short notes on partial tables.								
	b) State any two real-life applications of any categorical regression model. (5+5)					(5+5)			
5.	a) Define OR an	nd give its appli	cations			(A + C)			
6	b) Distinguish t	vin offoots for th	a fallowing thr	al ouus fatto.	model	(4+0)			
0.	VAR 2	<u>1</u>	2		TOTAL				
	,	-	_	-	101111				
	VAR 1								
	1	20	56	24	100				
	2	8	28	14	50				
		2	10	2	20				
7.	Explain Kappa	measure of agre	ement.		1/0				
	run 110ppu		SECTION	C = KA (CO3)					
	SECTION C = R4 (CO3)								
	Answer any TV	WO of the follo	wing			$(2 \times 12.5 = 25)$			
8.	Define continge	ency table and e	xplain its types	with examples.	,				

9.	An investigator randomly assigned 99 patients with stable congestive heart fail	ure (CHF) to an						
	exercise program (n=50) or no exercise (n=49) and followed patients twice a week for one year. The							
	outcome of interest was all-cause mortality. Those assigned to the treatment group exercised 3 times							
	a week for 8 weeks, then twice a week for 1 year. Exercise training was associated with lower							
	mortality (9 versus 20) for those with training versus those without.							
	$\frac{\text{Exercised}}{\text{Ves}} = 0 \qquad \text{All}$							
	$N_0 = 20 = 29$							
	Compute a valid measure of association and its 95% confidence interval.							
10.	Explain the backward elimination procedure in logistic regression.							
11.	Explain the generalized linear model for binary and count data.							
	SECTION D – K5 (CO4)							
	Answer any ONE of the following	(1 x 15 = 15)						
12.	Brief about partitioned Chi-Square analysis.							
13.	Derive the log-linear model of independence for two-way contingency table.							
SECTION E – K6 (CO5)								
	Answer any ONE of the following	$(1 \times 20 = 20)$						
14.	(a) Distinguish between logit and probit models.							
1.7	(b) Explain the procedure of logistic regression.	(5+15)						
15.	(a) Discuss the connection between Logistic and Log-linear models.							
	(b) Derive the logistic model $(X+Z)$ from the log linear model (XY, XZ, YZ) when Y is a binary response variable (8+12)							
		(0+12)						
	\$\$\$\$\$\$							