LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

ADDEAT LOT VESTIGA

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – **NOVEMBER 2023**

PST1MC04 – SAMPLING THEORY

Date: 08-11-2023 Dept. No. Time: 01:00 PM - 04:00 PM

SECTION A – K1 (CO1)

SECTION A – K1 (CO1)		
	Answer ALL the questions (5 x 1 = 5)	
1	Define the following	
a)	Inclusion Indicators and Inclusion Probabilities.	
b)	Fixed and Varying size sampling design.	
c)	Cumulative Total Method.	
d)	Ratio Estimator.	
e)	Lahiri's Method.	
	SECTION A – K2 (CO1)	
	Answer ALL the questions (5 x 1 = 5)	
2	Fill in the blanks	
a)	Formula for MSE of an estimator T in terms of Variance and Bias is	
b)	For any Sampling Design P(.), $E_p[n(s)] = $	
c)	An unbiased estimator of Y under random group method is	
d)	The ratio estimator is a particular case of	
e)	In Linear Systematic Scheme, the constant k is known as	
	SECTION B – K3 (CO2)	
	Answer any THREE of the following (3 x 10 = 30)	
3	Prove that unbiasedness of an estimator depends on the sampling design.	
4	In PPSWOR sampling scheme, give the reason for using Desraj ordered estimator instead of	
~	Hurwitz – Thompson estimator. Verify if Desraj ordered estimator is unbiased for population total.	
5	a) Show that the estimator \hat{Y}_{HT} is unbiased for Y.	
	b) Verify if $\widehat{Y_{HT}}$ is unbiased for 'Y' using	
	(i) the definition of expectation and (ii) an expression involving inclusion indicators under the design $P(s) = \begin{cases} \frac{1}{7} & \text{if } s = \{1, 2\} \\ \frac{3}{7} & \text{if } s = \{2, 3, 4\} \\ \frac{3}{7} & \text{if } s = \{3, 4, 5\} \\ 0, \text{ otherwise} \end{cases}$	
	Given $Y_1 = 4$, $Y_2 = 3$, $Y_3 = 5$, $Y_4 = 2$, and $Y_5 = 7$.	
6	Explain Random Group Method in detail. Also, prove that an unbiased estimator of Y under random	
	group method is $\hat{Y}_{RG} = \sum_{i=1}^{n} \frac{y_i}{x_i} T_x(i).$	
1		

Max.: 100 Marks

	Explain proportional allocation in Stratified Sampling and deduce $V(\hat{Y}_{St})$ under this	s allocation.
	SECTION C – K4 (CO3)	
	Answer any TWO of the following	$(2 \times 12.5 = 25)$
8	Examine whether $T_1(s) = \frac{1}{n(s)} \sum_{i \in s} Y_i$ and $T_2(s) = [\max_{i \in s} \{Y_i\} + \min_{i \in s} \{Y_i\}] / 2$	are unbiased for
	\overline{Y} under the sampling design P(s) = $\begin{cases} \frac{1}{4} & if \ n(s) = 3\\ 0 & otherwise \end{cases}$.	
	Given $Y_1 = 7$, $Y_2 = 3$, $Y_3 = 4$, and $Y_4 = 2$.	
9	If the UBE of $V(\hat{Y}_{HT})$ is $v(\hat{Y}_{HT}) = \sum_{i \in s} \sum_{i \in s} \left(\frac{Y_i}{\pi_i} - \frac{Y_j}{\pi_j}\right)^2 \left(\frac{\pi_i \pi_j - \pi_{ij}}{\pi_{ij}}\right); i < j$, then	under SRSWOR
1.0	show that $v(\hat{Y}_{HT}) = \frac{N(N-n)}{n} s_y^2$.	
$\frac{10}{11}$	Obtain Hartley – Ross unbiased ratio type estimator for population total.	
11	Explain in detail Warner's Model and find the estimated variance of $\hat{\Pi}_A$	
	SECTION D – K5 (CO4)	
12	Answer any ONE of the following Under Midzuno sampling Design, show that	$(1 \times 15 = 15)$
12		
	(i) the first order inclusion probability is $\Pi_i = \frac{N-n}{N-1} \cdot \frac{X_i}{X} + \frac{n-1}{N-1}$, i=1,2, N,	
	(ii) the second order inclusion probability is $\Pi_{ij} = \frac{(N-n)(n-1)}{(N-1)(N-2)} \cdot \frac{X_i + X_j}{X} + \frac{(n-1)(N-2)}{(N-1)(N-2)} \cdot \frac{X_i + X_j}{X}$	
13	2,, N. a. Obtain the approximate bias and MSE of the Ratio Estimator.	(8)
	b. Verify if the Hansen-Hurwitz estimator \hat{Y}_{dhh} under double sampling is unbi find V(\hat{Y}_{dhh}).	
		(8)
	SECTION E – K6 (CO5)	
	Answer any ONE of the following	$(1 \times 20 = 20)$
14	a. A Simple Random Sample of size $n = n_1 + n_2$ with mean \hat{Y} is drapopulation of N units and a Simple Random Subsample of size n_1 is drawn \hat{Y}_1 . Show that $Var_p(\hat{Y}_1 - \hat{Y}_2) = S_y^2(\frac{1}{n_1} + \frac{1}{n_2})$, where \hat{Y}_2 is the mean of the in the	from it with mean
	(12)	1
	b. Check if $v(\hat{Y}_{HT})$ is non-negative under MSD for all 's' receiving positive pr	robabilities. (8)
	a. Describe Simmon's Unrelated Randomized Response Model and estimate t proportion Π_A when Π_Y is unknown.	he population (12)
15		
15	b. Describe the linear regression estimation procedure for estimating the population	lation total "Y".