## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2023
PST1MC04 - SAMPLING THEORY

Date: 08-11-2023
Dept. No.
Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

## SECTION A - K1 (CO1)

## Answer ALL the questions

1 Define the following
a) Inclusion Indicators and Inclusion Probabilities.
b) Fixed and Varying size sampling design.
c) Cumulative Total Method.
d) Ratio Estimator.
e) Lahiri's Method.

## SECTION A - K2 (CO1)

Answer ALL the questions
(5 x $1=5$ )
2 Fill in the blanks
a) Formula for MSE of an estimator T in terms of Variance and Bias is
b) For any Sampling Design P(.), $E_{p}[n(s)]=$ $\qquad$ -.
c) An unbiased estimator of $Y$ under random group method is
d) The ratio estimator is a particular case of
e) In Linear Systematic Scheme, the constant $\mathbf{k}$ is known as $\qquad$ .

> SECTION B - K3 (CO2)

## Answer any THREE of the following

3 Prove that unbiasedness of an estimator depends on the sampling design.
4 In PPSWOR sampling scheme, give the reason for using Desraj ordered estimator instead of Hurwitz - Thompson estimator. Verify if Desraj ordered estimator is unbiased for population total.
5 a) Show that the estimator $\hat{Y}_{H T}$ is unbiased for Y .
b) Verify if $\widehat{Y_{H T}}$ is unbiased for ' Y ' using
(i) the definition of expectation and (ii) an expression involving inclusion indicators under the
design $\quad \mathrm{P}(\mathrm{s})=\left\{\begin{array}{l}\frac{1}{7} \text { if } s=\{1,2\} \\ \frac{3}{7} \text { if } s=\{2,3,4\} \\ \frac{3}{7} \text { if } s=\{3,4,5\} \\ 0, \text { otherwise }\end{array}\right.$
Given $\mathrm{Y}_{1}=4, \mathrm{Y}_{2}=3, \mathrm{Y}_{3}=5, \mathrm{Y}_{4}=2$, and $\mathrm{Y}_{5}=7$.
6 Explain Random Group Method in detail. Also, prove that an unbiased estimator of Y under random group method is $\hat{Y}_{R G}=\sum_{i=1}^{n} \frac{y_{i}}{x_{i}} T_{x}(i)$.

## SECTION C - K4 (CO3)

## Answer any TWO of the following

$8 \quad$ Examine whether $\mathrm{T}_{1}(\mathrm{~s})=\frac{1}{n(s)} \sum_{i \in s} Y_{i}$ and $\mathrm{T}_{2}(\mathrm{~s})=\left[\max _{i \in s}\left\{Y_{i}\right\}+\min _{i \in s}\left\{Y_{i}\right\}\right] / 2$ are unbiased for $\bar{Y}$ under the sampling design $\mathrm{P}(\mathrm{s})=\left\{\begin{array}{l}\frac{1}{4} \text { if } n(s)=3 \\ 0 \text { otherwise }\end{array}\right.$.

Given $\mathrm{Y}_{1}=7, \mathrm{Y}_{2}=3, \mathrm{Y}_{3}=4$, and $\mathrm{Y}_{4}=2$.
9 If the UBE of $V\left(\hat{Y}_{H T}\right)$ is $v\left(\hat{Y}_{H T}\right)=\sum_{i \in s} \sum_{i \in s}\left(\frac{Y_{i}}{\pi_{i}}-\frac{Y_{j}}{\pi_{j}}\right)^{2}\left(\frac{\pi_{i} \pi_{j}-\pi_{i j}}{\pi_{i j}}\right) ; i<j$, then under SRSWOR, show that $v\left(\hat{Y}_{H T}\right)=\frac{N(N-n)}{n} s_{y}^{2}$.

| 10 | Obtain Hartley - Ross unbiased ratio type estimator for population total. |
| :--- | :--- | :--- |
| 11 | Explain in detail Warner's Model and find the estimated variance of $\widehat{\Pi}_{A}$ |

## SECTION D - K5 (CO4)

|  | Answer any ONE of the following (1 $\times 15=15$ ) |
| :---: | :---: |
| 12 | Under Midzuno sampling Design, show that <br> (i) the first order inclusion probability is $\Pi_{i}=\frac{N-n}{N-1} \cdot \frac{X_{i}}{X}+\frac{n-1}{N-1}, \mathrm{i}=1,2 \ldots, \mathrm{~N}$, and <br> (ii) the second order inclusion probability is $\Pi_{i j}=\frac{(N-n)(n-1)}{(N-1)(N-2)} \cdot \frac{X_{i}+X_{j}}{X}+\frac{(n-1)(n-2)}{(N-1)(N-2)}, \mathrm{i} \neq \mathrm{j}=1$, $2, \ldots, N$. |
| 13 | a. Obtain the approximate bias and MSE of the Ratio Estimator. <br> b. Verify if the Hansen-Hurwitz estimator $\hat{Y}_{d h h}$ under double sampling is unbiased for Y and find $\mathrm{V}\left(\hat{Y}_{d h h}\right)$. |

## SECTION E - K6 (CO5)

## Answer any ONE of the following

14 a. A Simple Random Sample of size $n=n_{1}+n_{2}$ with mean $\hat{Y}$ is drawn from a finite population of N units and a Simple Random Subsample of size $n_{1}$ is drawn from it with mean $\hat{Y}_{1}$. Show that $\operatorname{Var}_{p}\left(\hat{Y}_{1}-\hat{Y}_{2}\right)=S_{y}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)$, where $\hat{Y}_{2}$ is the mean of the remaining $n_{2}$ units in the sample. (12)
b. Check if $v\left(\hat{Y}_{H T}\right)$ is non-negative under MSD for all 's' receiving positive probabilities.
a. Describe Simmon's Unrelated Randomized Response Model and estimate the population proportion $\Pi_{A}$ when $\Pi_{Y}$ is unknown.
b. Describe the linear regression estimation procedure for estimating the population total " Y ".

