LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
M.Sc. DEGREE EXAMINATION – STATISTICS			
-	THIRD SEMESTER – NOVEMBER 2023		
PST3MC02 – ADVANCED STOCHASTIC PROCESSES			
Date: 01-11-2023 Dept. No. Max. : 100 Marks Time: 01:00 PM - 04:00 PM			
SECTION A – K1 (CO1)			
	Answer ALL the questions $(5 \times 1 = 5)$		
1	Define the following		
a)	Markov process		
b)	Periodicity of Markov chain		
c)	Renewal process		
d)	Super- martingale		
e)	Reflected Brownian motion		
SECTION A – K2 (CO1)			
	Answer ALL the questions(5 x 1 = 5)		
2	Fill in the blanks		
a)	A matrix is called Markov if each row sum is		
b)	Recurrence is a property.		
c)	For Poisson process the inter-occurrence times is distribution.		
d)	In counter models the readjustment period is called time.		
e)	If $\varphi(s) = p_0 + p_1$, s, $0 < p_0 < 1$, the associated branching process is called a pure process.		
	SECTION B – K3 (CO2)		
	Answer any THREE of the following $(3 \times 10 = 30)$		
3	Explain spatially homogeneous Markov chains.		
4	Show that one-dimensional random walk is recurrent.		
5	State the postulates for a pure birth process and derive the differential equations for it.		
6	Narrate the branching process with two examples.		
7	Discuss age and block replacement policies.		
	SECTION C – K4 (CO3)		
	Answer any TWO of the following(2 x 12.5 = 25)		
8	Analyze Type I and Type II counter models in renewal process.		
9	Obtain mean and variance of Yule process when $X(0) = N = 1$.		
10	Establish the following: (i)The variance of sum as a martingale and (ii)Wald's martingale. (6.5+6)		
11	Elaborate the stationary process considering certain trigonometric polynomials		
	SECTION D - K5 (CO4)		
	Answer any ONE of the following $(1 \times 15 = 15)$ 151		
12	If π denotes the probability of eventual extinction show that it is the smallest positive root of the		
	equation $\varphi(s) = s$ and also prove that $\pi = 1$ if $m \le 1$ and $0 < \pi < 1$ if $m > 1$.		
	Let a Markov chain on the states $\{0,1,2,3,4,5\}$ has the following one-step transition probabilities: $D_{1} = 1$, $D_{2} = 2/4$, $D_{2} = 1/4$, $D_{3} = 7/8$, $D_{4} = 0$, $D_{2} = 1/4$, $D_{3} = 2/8$, $D_{4} = 1/2$		
13	$P_{00} = 1$, $P_{11} = 3/4$, $P_{12} = 1/4$, $P_{21} = 1/8$, $P_{22} = 7/8$, $P_{30} = P_{31} = 1/4$, $P_{33} = 1/8$, $P_{34} = 3/8$, $P_{40} = 1/3$, $P_{42} = P_{43} = 1/6$, $P_{44} = 1/3$, $P_{55} = 1$. (a)Find the equivalence classes. (b)Find period for different classes.		
	(2+3+9)		
	(5) i me out the recurrent and transient states. $(5+5+7)$		

SECTION E – K6 (CO5)			
	Answer any ONE of the following	$(1 \times 20 = 20)$	
14	(a)Show that Poisson process can be viewed as a renewal process and (b) State and prov		
17	elementary renewal theorem.	(10+10)	
15	Establish the probability generating function relations for branching process and obtain i	mean and	
10	variance for it.		
	+++++++++++++++++++++++++++++++++++++++		