MBAC 2004

M.B.A. DEGREE EXAMINATION, JANUARY 2021.

Second Semester

General (Common)

OPERATIONS RESEARCH AND MANAGEMENT

Time: Three hours Maximum: 100 marks

PART A — $(5 \times 6 = 30 \text{ marks})$ Answer any FIVE questions.

- 1. Explain the functions of operations management, in detail.
- 2. Discuss the principles of Plant layout Designing.
- 3. Describe briefly the application of operation research in managerial decision making.
- 4. Write the dual to the following problem:

Maximize $Z = x_1 - x_2 + 3x_3$

Subject to constraints

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 - 0x_2 - x_3 \le 2$$

$$2x_1 - 2x_2 - 3x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

- 5. Elaborate the various costs associated with inventory management.
- 6. Explain the Importance of inventory management in the modern business context.
- 7. Distinguish between PERT and CPM.
- 8. Solve the following game:

Player B

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

- 9. Discuss the various factors that are to be considered while selecting a plant site.
- 10. Compare and contrast the different types of plant layout.

2 MBAC 2004

11. Solve the following LPP by graphical method.

Maximize
$$Z=9x_1+3x_2$$

Subject to constraints

$$5x_1 + 2x_2 \le 20$$

 $x_1 \ge 3$
 $x_2 \le 5$
 $x_1, x_2 \ge 0$.

- 12. Briefly describe the advantages and limitations of operations research.
- 13. Find the optimal solution for the following transportation problem.

	Warehouse					
Shop	I	II	III	IV	V	Supply
A	20	18	18	21	19	100
В	21	22	23	20	24	125
\mathbf{C}	18	19	21	18	19	175
Demand	60	80	85	105	70	

14. Solve the following assignment model.

Men F Tasks \mathbf{E} \mathbf{G} Η (18 17 11 A 26 13 В 28 14 26 \mathbf{C} 38 19 18 15 D **1**9 10/ 26

15. A project consists of eight activities with the following relevant information:

Activity	Immediate Predecessor	Estimated duration (days)				
		Optimistic	Most likely	Pessimistic		
A	_	1	1	7		
В	_	1	4	7		
\mathbf{C}	_	2	2	8		
D	A	1	1	1		
E	В	2	5	14		
\mathbf{F}	C	2	5	8		
G	D,E	3	6	15		
Н	F,G	1	2	3		

Draw the PERT network and find out the expected project completion time.

4 <u>MBAC 2004</u>

- 16. A road transport company has one reservation clerk on duty at a time. Customers arrive at a rate of 8 per hour and the clerk can service 12 customers on an average per hour. Find out.
 - (a) System efficiency.
 - (b) Average waiting time in the queue.
 - (c) Average waiting time in the system
 - (d) Average no.of customers waiting for service in the system.
 - (e) Average no.of customers waiting for service in the queue.

5 MBAC 2004

PART C —
$$(1 \times 20 = 20 \text{ marks})$$

Compulsory

17. Use simplex method to solve the following LPP.

Maximize $Z = 3x_1 + 5x_2 + 4x_3$

Subject to the constraints

$$2x_1 + 3x_2 \le 8$$

$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

$$x_1, x_2, x_3 \ge 0$$

6