-	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600	0 034	
S	B.Com. DEGREE EXAMINATION – ACCOUNTING AND FINANC	CE	
2	FIRST SEMESTER – NOVEMBER 2022		
Luc	UAF 1301 – BUSINESS STATISTICS		
Da	ate: 28-11-2022 Dept. No. Ma	ax. : 10	0 Marl
Ti	me: 01:00 PM - 04:00 PM		
	SECTION A		
1	. Answer the following questions (5x1=5N	Aarks)
a)	K1	CO1	
b)	List the common measures of central tendency and dispersion.	K1	CO1
c)	Define LPP.	K1	CO1
d)	Recall the meaning on Saddle point.	K1	CO1
e)	Examine the main objectives in LPP – Graphical model	K1	CO1
	Chasse the service arguing (4	1 5 N	
2	. Choose the correct answer (:	5XI = 5	arks)
a)	Find the mean deviation according to median of the given data sets 7,47,8,42,47,95,42,96,3 a. 99 b. 100	K1	CO1
b)	 c. 101 d. 102 Find the standard deviation of the given data sets 7,47,8,42,47,95,42,96,3: a. 29.09 b. 30.09 c. 21.00 	K1	CO1
c)	d. 32.09 Find the mode of the given data set: 5,8,12,17,12,12,6,8,12, and 12 a. 5 b. 8 c. 12 d. 17	K1	CO1
d)	Find the range of the following data sets 61,22,34,17,81,99,42,94 a. 81 b. 82 c. 83 d. 84	K1	CO1
e)	The positive square root of the mean of the squares of the deviations of observations from their mean is called: a. Variance b. Range c. Standard deviation d. Coefficient of variation	К1	CO1

3. State True or False (5									5x1=51	Marks)	
a)	Regression analysis is used for prediction, while correlation analysis is used to measure the strengths of the association between two numerical variables. (True/False)										CO1
b)	Student grades (A to D) are (True/False)	e an ex	ample	of con	tinuous	numer	ical data	à.		K2	CO1
c)	A statistic is usually used to parameter. (True/False)	o provi	ide an	estimat	te for a	usually	v unobse	erved		K2	CO1
d)	The use of various statistica has reduced the burden of c	K2	CO1								
e)	If a set of data is perfectly s the median. (True/False)	al to	K2	CO1							
4	. Fill in the blanks								(:	5XI = 5I	larks)
a)	If the third moment about mean is zero, then the distribution is a. Positively skewed b. Negatively skewed c. Symmetrical d. Mesokurtic										CO1
b)	If the value of the game is zero, then the game is known as a. Fair strategy b. Pure strategy c. Mixed strategy d. Pure game										CO1
c)	 When the game is played on a predetermined course of action, which does not change throughout game, then the game is said to be									K2	CO1
d)	When the total allocations in a transportation model of m×n size do not equal to m+n-1 the situation is a. Unbalanced situation b. Tie situation c. Degeneracy d. Non-degeneracy										CO1
e)	Identify the wrong statement a. Game without saddle point is probabilistic b. Game with saddle point cannot be solved by dominance rule c. Game with saddle point will have pure strategies d. Game without saddle point uses mixed strategies										CO1
			5	SECTI	ON B						
Ansv	ver TWO out of FOUR						(2	2 x 10 =	= 20 Ma	rks)	
5)	A panel of judges A and B graded seven debaters and independently awarded the following marks									K3	CO2
	Debaters 1 2 3 4 5 6 7										
	Marks by A 4		34	28	30	44	38	31	-		
	Marks by B 3	62	39	26	30	38	34	28			

	An eight debater was awarded 36 marks by judge A while judge B was not present. If														
	judge B was also present, how many marks would you expect him to award to the eight														
	debater's assuming that the same degree of relationship exists in their judgment.														
6)	Using three year moving averages determine the trend and short-term fluctuations.														
	Year	Year 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977								6 1977	K3	CO2			
	Production	21	22	23	;	25		24	22	25	26	27	26		
7)	Fit a second degree curve of regression of y on x to the following data:														
		X 1 2 3 4								K3	CO2				
	Y 6 11 18 27														
8)	Calculate th	e quar	ile d	leviati	on	and	its	coeffi	cient f	or the	e follow	ving f	requency		
	distribution.													1/2	GO3
	Marks abov	'e		0	10	2	20	30	40	50	60	70]	K3	CO2
	No. of stude	ents		150	142	2 1	130	120	72	30	12	4	1		
							SE(NC				_		
Ansv	ver TWO out	of FO	[] R										(2 x 10 :	= 20 N	(arks)
0)	Eind the first	four of	ntrol	mom	onta	fort	tha f	follow	ing frog	ulonot	7		(2 A 10		
9)	$\mathbf{X} = 0$	1001 C	miai	2	ents	3		4		luency 6		7	8	17.4	<i>c</i> o2
	F 1	28	28 56			70	56	2	.8 8	3	1	K 4	003		
	Assume it is a symmetrical distribution.														
10)	Deseasonalis	se the fo	ollowi	ing da	ta w	ith t	he h	elp of	season	al data	a given l Mari	below:	:		
	Cash Balan	Cash Balance			$\frac{1}{10}$ $\frac{1}{400}$		550		360	360 350		5	une 50	K4	CO3
	('000 Rs.)														
	Seasonal In	dex	120	0 80			110)	90		70	1	20		
11)	A cement fac	ctory m	anage	er is co	onsi	derir	ng tł	ne best	t way to	o trans	port cen	nent f	rom three		
	manufacturi	ng centi	es, P	, W, F	R to	depo	osits	s A, B,	. C, D a	ind E.	the wee	ekly p	roduction		
	and demands	along	transp	portati	on c	cost j	pre t	tonne a	are give	n belo	ow:				
	D	A B C D E T									onnes	V A	CO^{2}		
	r O	4 2		3	2			4		4		35		COS	
	R	3		5		$\frac{2}{2}$			4		<u> </u>	4)		
		22		45		2	0		18		30	13	35		
	What should	be the	distri	butior	n pro	grar	nme	e while	e applyi	ng u-v	w method	1?]		
12)	Critically and	alyse th	e stra	tegies	of g	game	e the	eory w	ith suita	able e	xamples			K4	CO3
							CE/	TTA						1	
		0					SE(עא				·	• • -	
Ansv	ver ONE out	of TW	0										$(1 \times 20 =$	= 20 N	larks)
13)	From 10 ob	servatio	ons or	n price	e (X)) and	d suj	pply (Y) of a	comm	odity, tł	ne foll	owing	K5	CO4
	$\sum X = 130, \sum$	$\sum Y = 2$	ieu. 20, ∑	$X^2 = 22$	288,	ΣY	² = 5	506 ai	nd ∑XY	7 = 34	67.				
	Compute a 16.	line of	regres	ssion (of Y	on 2	X ar	nd estin	mate the	e supp	oly when	the p	rice is		
	·														-

14).	The following data shows the sales (in million dollars) of a company.											CO4	
		X	2015	201	6 20	17	2018	20	019				
		Y	12	19	29		37	45	5				
	Estimate th	e sales	in the year	2020 u	sing the re	gressic	on line?						
					SECTIO								
Answ	Answer ONE out of TWO (1 x 20 =												
15)	Develop a feasible region on a graph paper satisfying the following restraints.										K6	CO5	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$												
16)	a). Pure Strategy in Game Theory (10 marks)											CO5	
	,	0.		2 <	,	Dlove	n P						
						riaye			I				
					Ι	II	III	IV	V				
				Ι	-2	0	0	5	3				
	Player A			Π	4	2	1	3	2				
				III	-4	-3	0	-2	6				
	IV 5 3 -4 2 -6												
	Create the optimal plan for both the players.												
	 b). Write the concepts to the following transportation techniques in the Operation Research:(10 marks) a) Northwest Corner Rule b) Least Cost Entry Method c) Vogel's Approximation Method d) MODI Method. 												

