LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Com. DEGREE EXAMINATION - ACCOUNTING AND FINANCE

FIRST SEMESTER - NOVEMBER 2022
UAF 1301 - BUSINESS STATISTICS

Date: 28-11-2022
Time: 01:00 PM - 04:00 PM \square Max. : 100 Marks

SECTION A			
1. Answer the following questions		($5 \times 1=5 \mathrm{Marks}$)	
a)	Define statistics.	K1	CO1
b)	List the common measures of central tendency and dispersion.	K1	CO1
c)	Define LPP.	K1	CO1
d)	Recall the meaning on Saddle point.	K1	CO1
e)	Examine the main objectives in LPP - Graphical model.	K1	CO1
2. Choose the correct answer		($5 \times 1=5$ Marks)	
a)	Find the mean deviation according to median of the given d 7,47,8,42,47,95,42,96,3 a. 99 b. 100 c. 101 d. 102	K1	CO1
b)	Find the standard deviation of the given data sets $7,47,8,42,47,95,42,96,3:$ a. 29.09 b. 30.09 c. 31.09 d. 32.09	K1	CO1
c)	Find the mode of the given data set: $5,8,12,17,12,12,6,8,12$, and 12 a. 5 b. 8 c. 12 d. 17	K1	CO1
d)	Find the range of the following data sets $61,22,34,17,81,99,42,94$ a. 81 b. 82 c. 83 d. 84	K1	CO1
e)	The positive square root of the mean of the squares of the deviations of observations from their mean is called: a. Variance b. Range c. Standard deviation d. Coefficient of variation	K1	CO1

3. State True or False

(5x1 = 5Marks)

a)	Regression analysis is used for prediction, while correlation analysis is used to measure the strengths of the association between two numerical variables. (True/False)	K 2	CO 1
b)	Student grades (A to D) are an example of continuous numerical data. (True/False)	K 2	CO 1
c)	A statistic is usually used to provide an estimate for a usually unobserved parameter. (True/False)	K 2	CO 1
d)	The use of various statistical software like MS Excel, Minitab, SPSS, and SAS has reduced the burden of computing.(True/False)	K 2	CO 1
e)	If a set of data is perfectly symmetrical, the arithmetic mean must be identical to the median. (True/False)	K 2	CO 1

4. Fill in the blanks
(5x1= 5Marks)
a) If the third moment about mean is zero, then the distribution is
a. Positively skewed
b. Negatively skewed

K 2 CO 1
c. Symmetrical
d. Mesokurtic
b) If the value of the game is zero, then the game is known as
a. Fair strategy
b. Pure strategy
c. Mixed strategy
d. Pure game
c) When the game is played on a predetermined course of action, which does not change throughout game, then the game is said to be \qquad
a. Pure strategy game
b. Fair strategy game
c. Mixed strategy game
d. Unsteady game
d) When the total allocations in a transportation model of $m \times n$ size do not equal to $m+n-1$ the situation is \qquad
a. Unbalanced situation
b. Tie situation
c. Degeneracy
d. Non-degeneracy
e) Identify the wrong statement
a. Game without saddle point is probabilistic
b. Game with saddle point cannot be solved by dominance rule

K 2 CO 1
c. Game with saddle point will have pure strategies
d. Game without saddle point uses mixed strategies

SECTION B

Answer TWO out of FOUR
($\mathbf{2} \times 10=20$ Marks)
5) A panel of judges A and B graded seven debaters and independently awarded the following marks

Debaters	1	2	3	4	5	6	7
Marks by A	40	34	28	30	44	38	31
Marks by B	32	39	26	30	38	34	28

	An eight debater was awarded 36 marks by judge A while judge B was not present. If judge B was also present, how many marks would you expect him to award to the eight debater's assuming that the same degree of relationship exists in their judgment.													
6)	Using three year moving averages determine the trend and short-term fluctuations.												K3	CO 2
	Year	1968	1969			1971	1972	1973	1974	1975	1976	1977		
	Production	21	22	23		25	24	22	25	26	27	26		
7)	Fit a second degree curve of regression of y on x to the following data:\mathbf{X} 1 2 3 4 \mathbf{Y} 6 11 18 27												K3	CO 2
8)	Calculate the quartile deviation and its coefficient for the following frequency distribution.												K3	CO 2
	Marks above		0		10	20	30	40	50					
	No. of students				142	130	120	72	30	12	4			

SECTION C

Answer TWO out of FOUR
9) Find the first four central moments for the following frequency

SECTION D

Answer ONE out of TWO
From 10 observations on price (X) and supply (Y) of a commodity, the following figures were obtained.
$\sum \mathrm{X}=130, \sum \mathrm{Y}=220, \sum \mathrm{X}^{2}=2288, \sum \mathrm{Y}^{2}=5506$ and $\sum \mathrm{XY}=3467$.
Compute a line of regression of Y on X and estimate the supply when the price is 16.

The following data shows the sales (in million dollars) of a company.

\mathbf{X}	2015	2016	2017	2018	2019
\mathbf{Y}	12	19	29	37	45

Estimate the sales in the year 2020 using the regression line?

SECTION E

Answer ONE out of TWO
15) Develop a feasible region on a graph paper satisfying the following restraints.
$x \geq 0, y \geq 0$
$12 x+12 y \leq 840$
$3 \mathrm{x}+6 \mathrm{y} \leq 300$
$8 \mathrm{x}+4 \mathrm{y} \leq 480$
Under the above condition maximize the function $5 x+7 y$.
16)
a). Pure Strategy in Game Theory ($\mathbf{1 0}$ marks)

Player B

Player A

I	I	II	III	IV	V
II	4	0	0	5	3
III	-4	-3	0	-2	6
IV	5	3	-4	2	-6

Create the optimal plan for both the players.
b). Write the concepts to the following transportation techniques in the Operation Research:(10 marks)
a) Northwest Corner Rule
b) Least Cost Entry Method
c) Vogel's Approximation Method
d) MODI Method.

