LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

Q. No

1

B.Com. DEGREE EXAMINATION – **HONOURS**

FOURTH SEMESTER – APRIL 2022

UBH 4504 – BUSINESS STATISTICS

Date: 16-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

> PART – A Answer ALL questions

Define quartiles of a distribution.

2 State the empirical relationship connecting mean, median and mode.

3 Explain the merits of quartile deviation.

4 Explain the term "Correlation"

5 Explain moving aveage method.

6 Describe transportation

7 Write a note on sum games.

8 Write the formula for moments.

9 Explain Bowley's coefficient of skewness with formula.

10 Write the formula for combined mean and Standard deviation.

PART – B

Answer any FOUR questions

(4 x 10 = 40 Marks)

Max.: 100 Marks

(10 x 2 = 20 Marks)

11 The following table gives the distribution of income of 100 families in a large village. Calculate Standard deviation:

Income	Below 1000	1000-2000	2000-3000	3000-4000	4000-5000	5000-6000
(Rs)						
No. of	18	26	30	12	10	4
Familiess						

12 Calculate Karl Pearson's coefficient of Skewness.

Income	0 &	10 &	20 &	30 &	40 &	50 &	60 &	70 &	80 &
(Rs. Per	Above	Above	Above	Above	Abo	Above	Above	Above	Above
day)					ve				
No. Of	150	140	100	80	80	70	30	14	0
Employees									

13 From the following table find the correlation between age and playing habits:

Age(years)	15-16	16-17	17-18	18-19	19-20	20-21
No.of Students	200	270	340	360	400	200
Regular Players	150	162	170	180	180	120

14	Find the regression coefficient of X on Y and Yon X for the following data:								
	Х	3	2	-1	6	4	-2	5	
	Y	5	13	12	-1	2	20	0	

15 Solve the game :

	В							
А	5	20	-10					
	10	6	2					
	20	15	18					

What strategy will the 2 players adopt? Also determine the value of the game.

16 Indicate on a graph paper the region satisfying the following constraints:

 $\begin{array}{l} X \ \geq 0; \ Y \leq 0 \\ 12 \ X + 12 \ Y \ \leq 840 \end{array}$

 $3X + 6Y \le 300$

 $\frac{3X+0Y}{8X+4Y} \le 480$

Under the above conditions maximize the functions 5X+7Y

17 Write the steps for Least cost entry method and Vogel's Approximation method.

PART – C

Answer any TWO questions

- 18 The line regression of Y on X and X on Y are Y = X+5 and 16X 9Y = 94. Find the variance of X if
- (a) the variance of Y is 16. Also find the covariance of X and Y.
- (b) The heights (in cms0 and in weights(in kgms) of a random sample of 8 adult males are shown in the following data:

Height X	177	163	173	182	171	168	174	184
Weight Y	71	67	77	85	69	62	73	80

19 For the following series of observations, verify that the 4 year centred moving average is equivalent to a 5 year weighted moving average with weights 1,2,2,2,1 respectively.

5	\mathcal{O}	\mathcal{O}	\mathcal{O}	د .		, , ,	1	2			
Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Sales ('000	2	6	1	5	3	7	2	6	4	8	3
Rs.)											

20 Solve the transportation problem by North- West Corner Rule, Least Cost Method and VAM

Destinations		Requirements		
	Α	B	С	
Α	6	4	1	50
В	3	8	7	40
С	4	4	2	60
Availability	20	95	35	150

2

 $(2 \times 20 = 40 \text{ Marks})$