LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

Г

B.Com. DEGREE EXAMINATION – **COMMERCE**

SECOND SEMESTER – **APRIL 2022**

UBC 2301 – BUSINESS STATISTICS

(21 BATCH ONLY)

Date: 27-06-2022 Dept. No. Time: 01:00 PM - 04:00 PM

Max.: 100 Marks

SECTION A									
Ans	Answer ALL the Questions								
1.	Define the following	(5 x 1 = 5)							
a)	Geometric mean.	K1	CO1						
b)	Properties of correlation coefficient.	K1	CO1						
c)	Components of timeseries.	K1	CO1						
d)	Intercept & Slope.	K1	CO1						
e)	North-west corner rule.	K1	CO1						
2.	Fill in the blanks	$(5 \times 1 = 5)$							
a)	Find the arithmetic mean for the following data: 12, 15, 10, 9, 11, 16, 14, 6	K1	CO1						
b)	Write down the formula for Rank Correlation	K1	CO1						
c)	A time series is arranged in order.	K1	CO1						
d)	Linear regression uses one independent variable to explain or predict the	K1	CO1						
	outcome of the variable Y								
e)	Expand VAM	K1	CO1						
3.	Match the following	$(5 \times 1 = 5)$	5)						
a)	GM – (i) Cause and effect relationship	K2	CO1						
b)	Error term - $(ii)Y_c = a+bx+cx^2$	K2	CO1						
c)	Second degree parabola - (iii) nth root	K2	CO1						
d)	Transportation - (iv) Lack of perfect goodness of fit	K2	CO1						
e)	Correlation – (v) Minimizes cost								
4.	TRUE or FALSE	$(5 \times 1 = 5)$							
a)	The empirical formula gives the relationship between mean, median and	K2	CO1						
	mode.								
b)	In repeated rank correlation, the term m stands for a number of times a value	K2	CO1						
	not repeated.								
c)	Time series is nothing but statistical observation arranged in chronological	K2	CO1						
	order.								

d)	$Y = \alpha X$	$C + \beta \rho + \epsilon$	where: <i>α</i> ,	$\beta = Not$	Consta	nt					K2	2	CO1
e)	Linear programming is a mathematical technique to find the best Ki organizational resources. Ki								2	CO1			
	organi	izational 1	resources.										
					SEC	CTION	B					I	
swe	er any T	WO of t	he followi	ng							(2	x 10 :	= 20)
			's coefficie									K3	CO2
	Marks	0 - 10	10 - 20	20 - 3	30 30	- 40	40 - 50	50 -	60	60 - 70	70 - 80		
	No. of persons	10	25	20	15		10	35		25	10		
V	Write a 1	note on lo	gistic regr	ession.								K3	CO2
Write a note on logistic regression. A sample of 12 fathers and their eldest sons gave the following data about their heights in inches. Find the rank correlation coefficient.								r	K3	CO2			
	eights i Father	n inches.		nk corre		oeffici	ent. 66	68 (57	69	71		
_	Son Jse grar	68 66 68 66	6 68 thod to sol	$\frac{65}{\text{ve the fo}}$		68 L.P.P.	65	71 (57	68	70	K3	CO2
	0 1	ze z = 10x				,							
		to constra	-										
	$x + y \le$,										
	 2x +4y ≤												
	y – x + y ≤												
	And x, y												
					SEC	TION	C						
ve	er any T	WO of t	he followi	ng							((2 x 1	0 = 20)
Y	lou are	given bel	ow the foll	0				<u> </u>				K4	CO3
_	Maan			lv. Exp ((X) (in 1	akhs)	Sale 90	s (Y) (i	n lakł	ıs)			
-	Mean S.D.		10				12						
			icient $= 0.8$										
2 3	. Find t . What	he likely	regression sales when advertiser akhs?	advertis		-				tain sa	les		
	-		ain. Skewi		Insutani	afad	liatuihaatia					K4	CO3
		1	moving a						hala	XX7		K4 K4	CO3
		e 5 yearry Cear	1995	1996	1997	1998	1999	2000				K 4	005
	P	roduction	n 224	213	202	215	222	244	236	5			
					<u> </u>	<u> </u>	<u> </u>	1]			

12.	Obtain initial basic feasible solution to the following transportation problems using Least Cost Entry Method										CO
	Leus	Warehouse		S1	S2	S3		Availability			
		W1		5	4	3		6			
		W2		4	7	6		8			
	W3		3	2	5	8					
		W4	ł l	8	6	7		4			
		Require	ment	8		12	2 30				
	•				SE	CTION	D				•
Ansv	wer ai	ny ONE of the	following						(1 x 20 =	= 20)	
13.	Calc X f	ulate the mode 25 7	from the for 30 11	ollowin	ng data 35 17	: 40 15		45 50 14 10			
		,			11			1. 10		J	
14.	Yea Val	ue 140	1962 144	1	1963 160	1964 152	least squa 1965 168	1966 19	969 30	K5	CC
	Find	the trend value	e of the mis	sing y	ear 196	51.					
					SE	CTION	E				
		ny ONE of the	0						(1 x 20	= 20)	
15.	Calculate the regression equation of X on Y and Y on X from the following data and estimate X when $Y = 26$										CO
	X Y		2 1		17 9	18 20 13 11		24 20	30 21		
						I					
16.											CO
		Factory/ Warehouse	W1	W	2	W3	W4	Availability			
		F1	48	60)	56 58		140			
		F2	45	55	;	53 60		260			
		F3	50	65		60	62	360			
		F4	52	64		55	61	220			
		Requirement	200	200 32		250	210	980			