LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Com. DEGREE EXAMINATION - COMMERCE

SECOND SEMESTER - APRIL 2022
UBC 2301 - BUSINESS STATISTICS
(21 BATCH ONLY)

Date: 27-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM
SECTION A
Answer ALL the Questions

1.	Define the following	x 1 = 5)	
a)	Geometric mean.	K1	CO1
b)	Properties of correlation coefficient.	K1	CO1
c)	Components of timeseries.	K1	CO1
d)	Intercept \& Slope.	K1	CO1
e)	North-west corner rule.	K1	CO1
2.	Fill in the blanks	x $1=5$)	
a)	Find the arithmetic mean for the following data: $12,15,10,9,11,16,14,6$	K1	CO1
b)	Write down the formula for Rank Correlation	K1	CO1
c)	A time series is arranged in ___ order.	K1	CO1
d)	Linear regression uses one independent variable to explain or predict the outcome of the \qquad variable Y	K1	CO1
e)	Expand VAM	K1	CO1
3.	Match the following	x $1=5$)	
a)	GM - (i) Cause and effect relationship	K2	CO1
b)	Error term - (ii) $\mathrm{Y}_{\mathrm{c}}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$	K2	CO1
c)	Second degree parabola - (iii) nth root	K2	CO1
d)	Transportation - (iv) Lack of perfect goodness of fit	K2	CO1
e)	Correlation - (v) Minimizes cost		
4.	TRUE or FALSE	x $1=5$)	
a)	The empirical formula gives the relationship between mean, median and mode.	K2	CO1
b)	In repeated rank correlation, the term m stands for a number of times a value not repeated.	K2	CO1
c)	Time series is nothing but statistical observation arranged in chronological order.	K2	CO1

d)	$Y=\alpha X+\beta \rho+\epsilon$ where: $\alpha, \beta=$ Not Constant	K2	CO1
e)	Linear programming is a mathematical technique to find the best organizational resources.	K2	CO1

SECTION B

Answer any TWO of the following

5 Calculate Bowley's coefficient of skewness from the following data.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-$ 70	$70-$ 80
No. of persons	10	25	20	15	10	35	25	10

6. Write a note on logistic regression.

K 3	CO 2
K 3	CO 2
K 3	CO 2

SECTION C

Answer any TWO of the following
9. You are given below the following information about advertising and sales.

	Adv. Exp (X) (in lakhs)	Sales (Y) (in lakhs)
Mean	10	90
S.D.	3	12

Correlation coefficient $=0.8$

1. Obtain the two regression lines.
2. Find the likely sales when advertisement expenditure is Rs. 15 lakhs
3. What should be advertisement expenditure if the company wants to attain sales target of Rs. 120 lakhs?
4. Illustrate and explain. Skewness and kurtosis of a distribution.
5. Calculate 3 yearly moving averages of the production figures given below

K 4	CO 3
K4	CO 3
K 4	CO 3

12. Obtain initial basic feasible solution to the following transportation problems using Least Cost Entry Method

Warehouse/Stores	S1	S2	S3	Availability
W1	5	4	3	6
W2	4	7	6	8
W3	2	5	8	12
W4	8	6	7	4
Requirement	8	10	12	$\mathbf{3 0}$

SECTION D

Answer any ONE of the following

($\mathbf{1 \times 2 0 = 2 0)}$
13. Calculate the mode from the following data:

x	25	30	35	40	45	50	55
f	7	11	17	15	14	10	11

14. Fit a straight-line trend to the data by the method of least square.

Year	1960	1962	1963	1964	1965	1966	1969
Value	140	144	160	152	168	176	180

Find the trend value of the missing year 1961.

SECTION E

Answer any ONE of the following
$(\mathbf{1} \times 20=20)$
15. Calculate the regression equation of X on Y and Y on X from the following data and estimate X when $\mathrm{Y}=26$

X	10	12	13	17	18	20	24	30
Y	5	6	7	9	13	15	20	21

16. Obtain optimal solution by using MODI method.

K6

Factory/ Warehouse	W1	W2	W3	W4	Availability
F1	48	60	56	58	140
F2	45	55	53	60	260
F3	50	65	60	62	360
F4	52	64	55	61	220
Requirement	200	320	250	210	$\mathbf{9 8 0}$

