LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 29-04-2025

M.Sc. DEGREE EXAMINATION - BIOTECHNOLOGY SECOND SEMESTER - APRIL 2025

Max.: 100 Marks

PBT2MC03 - BIOINFORMATICS AND COMPUTATIONAL BIOLOGY

Dept. No.

Time: 01:00 PM - 04:00 PM				
SECTION A – K1 (CO1)				
` ′				
	Answer ALL the questions		$(5 \times 1 = 5)$	
1	Choose the best option			
a)	The GenBank database primarily contains			
	i) Nucleotide sequence data	ii) Bibliographic data		
	iii) Chemical structural data	iv) Protein 3D structur	ral data	
b)	Gaps are added to the alignment because it			
	i) Increasing the matching of or dissimilar amino acids at subsequent portions			
	ii) Reduces the overall score			
	iii) Increases the matching of identical amino acids at subsequent portions			
	iv) Enhances the area of the sequences.levels			
c)	The word PATTERN in PROSITE denotes that the entry	-		
1	i) Block ii) Fuzzy regular expression	iii) Profile	iv) Normalization	
d)	What is the primary data structure used in Biopython?	···) a .	·) D: .:	
	i)Lists ii) Tuples	iii) Sets	iv) Dictionaries	
e)	A gene whose expression helps to identify transformed of		:> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	i) Plasmid ii) Selectable marker	iii) Stuctural gene	iv) Vector	
SECTION A – K2 (CO1)				
	Answer ALL the questions		$(5 \times 1 = 5)$	
2	Answer in one or two sentences			
a)	Expand VFF.			
b)	Define Chemdraw.			
c)	List any three functions available in SeqUtils.			
d)	Comment on G-quadruplex.			
e)	What is Hap Map?			
SECTION B – K3 (CO2)				
	Answer any THREE of the following		$(3 \times 10 = 30)$	
3	Explain how SNP databases contribute to personalized medicine.			
4	Describe how iterative alignment improves over progressive alignment.			
5	Demonstrate Clustal Omega to align three given DNA sequences and interpret the results.			
6	Describe how Python simplifies the automation of biological data analysis.			

7	Evaluate the role of INSDC in standardizing genomic data exchange.		
SECTION C – K4 (CO3)			
	Answer any TWO of the following $(2 \times 12.5 = 25)$		
8	Develop a pipeline to integrate chemical structure databases with machine learning models for drug		
	design.		
9	Evaluate the impact of hidden Markov models (HMMs) on iterative alignment.		
10	Compare the computational complexity of Needleman-Wunsch and Smith-Waterman algorithms.		
11	Differentiate between List, Tuple & Set with suitable examples of each.		
SECTION D – K5 (CO4)			
	Answer any ONE of the following $(1 \times 15 = 15)$		
12	Examine how chemical structure databases facilitate structure-activity relationship (SAR) studies.		
13	Design a Python script that reads multiple FASTA files and performs GC-content analysis.		
SECTION E – K6 (CO5)			
	Answer any ONE of the following $(1 \times 20 = 20)$		
14	Design a web-based platform that integrates whole-genome and Mendelian disease databases for		
	genetic analysis.		
15	Analyze the impact of HapMap findings on drug response and pharmacogenomics.		

#########