# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034



### **B.Sc.** DEGREE EXAMINATION - **CHEMISTRY**

### SIXTH SEMESTER - APRIL 2023

### 16UCH6MS01 - SPECTROSCOPY

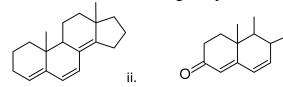
| Date: 12-05-2023 | Dept. No. | Max.: 100 Marks |
|------------------|-----------|-----------------|
|                  |           |                 |

Time: 09:00 AM - 12:00 NOON

### **PART-A**

# **Answer ALL questions**

 $(10 \times 2 = 20 \text{ Marks})$ 


- 1. What are the fundamental physical parameters of a wave?
- 2. State Born-Oppenheimer approximation.
- 3. Mention the significance of Beer-Lambert's law.
- 4. Differentiate between chromophore and auxochrome.
- 5. Define Hooke's law based on the simple harmonic oscillator.
- 6. State mutual exclusion Principle.
- 7. Which of the following are NMR active?  $^{12}C_6$ ,  $^{13}C_6$ ,  $^{14}H_1$ ,  $^{16}O_8$
- 8. Chemical shift is a relative value. Justify
- 9. Distinguish between the parent ion peak and base peak.
- 10. What is the nitrogen rule?

### **PART-B**

### **Answer any EIGHT questions**

 $(8 \times 5 = 40 \text{ Marks})$ 

- 11. Write a note on the interaction of radiation with matter.
- 12. Analyze the selection rules followed for electronic transitions.
- 13. Examine the factors affecting line width and intensity of spectral lines.
- 14. Find out the  $\lambda_{max}$  for the following compounds.



- 15. Examine the principles of atomic absorption spectroscopy and flame photometry.
- 16. Draw the block diagram for IR spectrometer and mention the parts.
- 17. Compare IR and Raman spectroscopic techniques.
- 18. Mention the advantages of TMS as the reference standard in <sup>1</sup>H, <sup>13</sup>C NMR spectroscopy.
- 19. The chemical shift values of CH4, H2C=CH2 and HC=CH are 0.9, 5.3 and 2.3  $\delta$  respectively. Account for the anomalies in  $\delta$  values with reference to the C hybridization.
- 20. Analyze the impact of inductive effect and mesomeric effect on the chemical shift values in NMR.
- 21. Evaluate the types of fragmentation patterns generated in mass spectrometry.
- 22. Deduce the molecular formula with the given spectral data.

  Molecular ion peak at m/z 107 with a relative intensity of 100. The relative intensity of M+1 peak is 8.00 and the relative intensity of M+2 peak is 0.3%.

### **PART-C**

## Answer any FOUR questions.

 $(4 \times 10 = 40 \text{ Marks})$ 

- 23. a) If it takes 3.36 x 10<sup>-19</sup> J of energy to eject an electron from the surface of a certain metal, calculate the longest possible wavelength, in nanometers, of light that can ionize the metal. (6)
  - b) Analyse the significance of the Franck-Condon principle. (4)

1

- 24. a) Investigate the factors affecting the shift in  $\lambda_{\text{max}}$ . (5)
  - b) Draw the block diagram of UV-Visible spectrophotometer. (5)
- 25. a) Demonstrate the application of IR and Raman spectroscopic techniques in elucidating the structure of organic compounds. (5)
  - b) Explain the types of stretching and bending vibrations. (5)
- 26. a) Predict how many signals in <sup>13</sup>C NMR are observed for the following compounds. (5)

$$CH_3$$
  $CH_3$   $CH_3$ 

- b) Delineate the different types of coupling constant. (5)
- 27. a) Explain the following (6)
- (i) McLafferty rearrangement
  - (ii) Retro Diels-Alder reaction
  - b) How will you identify alcohols, aldehydes in a mass spectrum? (4)
- 28. Deduce the structure of the compound which exhibits the following data.

A  $C_9H_{12}O$  compound has strong infrared absorption at 3300 to 3400 cm<sup>-1</sup>. It's <sup>1</sup>H NMR spectrum has three sets of lines: singlets at  $\delta 1.1$  (6H), 1.9 (1H) and 7.3 (5H) ppm. The <sup>13</sup>C NMR spectrum of this compound has six discrete signals: 149.18, 128.13, 126.56, 124.41, 72.41 and 31.66. Mass spectrum: m/e: 136.19.

\$\$\$\$\$\$\$