LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - FOOD CHEMISTRY AND FOOD PROCESSING FIRST SEMESTER - APRIL 2023

PFP1MC01 - CHEMISTRY OF MACRO AND MICRONUTRIENTS

Date: 29-04-2023	Dept. No.	Max.: 100 Marks
Time: 09:00 AM - 12:00	NOON L	

	SECTION A		
Ansv	ver ALL the questions		
1	Define the following		
a)	Water activity in food.	K1	CO1
b)	Degree of Polymerization in polysaccharides.	K1	CO1
c)	Fire point and flash point of lipids.	K1	CO1
d)	Iodine value.	K1	CO1
e)	Zwitterion.	K1	CO1
2	Multiple Choice Questions	$(5 \times 1 = 5)$	
a)	The substance which can act both as an acid and base, is called	K2	CO1
	a. amphoteric b. hydrophilic c. hydrophobic		
b)	Modified starches are also called as	K2	CO1
	a. smart starches b. food gels c. native starches		
c)	The enzyme used to hydrolyse a triaglycerol into fatty acids and glycerol is	K2	CO1
	a. lipase b. ligases c. histidase		
d)	The commonly used solvent in the extraction of fat is	K2	CO1
	a. pentane b. petroleum ether c. alcohols		
e)	The plot of solubility against temperature is called as	K2	CO1
	a. solubility curve b. isotherm curve c. temperature curve		
	SECTION B		
	Answer any THREE of the following in 500 words		0 = 30
3	Illustrate the phase transition diagram of water with a neat graph.	K3	CO2
4	Demonstrate the hydrolytic reactions of oligosaccharides and their applications in	K3	CO2
	food industry.		
5	Outline the chemical and functional properties of any two minerals in food.		CO2
6	a) Choose any two suitable methods for the extraction of lipids. Write the	K3	CO2
	procedures in detail.		
	b) Prepare a di peptide using glycine and alanine. (7+3)	***	~~*
7	Demonstrate the role of <i>phenolase</i> , <i>lipoxygenase</i> and <i>chlorophyllase</i> enzymes in	K3	CO2
	food industries.		

	SECTION C					
A a						
Answer any TWO of the following in 500 words			$(2 \times 12.5 = 25)$			
8	Enumerate the different interactions of ice in the present of solutes.		CO3			
9	9 Illustrate the mechanism of action of non-enzymatic browning in imparting desirable color and flavour to food products.					
10	10 a. Classify the fatty acids based on degree of saturation and function.					
	b. Describe various structural analysis of Protein. (4.5 + 8)					
11	a. Distinguish between competitive and non-competitive enzyme catalysed inhibition reaction.	K4	CO3			
	b. Explain the role of following forces in determining the stability of protein structure. i) Hydrogen bonding ii) dipole-dipole interaction.					
	(6+6.5)					
	SECTION D	•				
Answer any ONE of the following in 1000 words			$(1 \times 15 = 15)$			
12	Explain the applications of various food gels in food industries.	K5	CO4			
13	Write the modification of protein structure by alkylation, acylation, phosphorylation, and sulphitolysis reaction.	K5	CO4			
	SECTION E					
Answer any ONE of the following in 1000 words			$(1 \times 20 = 20)$			
14	Summarize the sources, functions, deficiency, stability and mode of degradation of vitamin-A.	K6	CO5			
15	 a. Construct an equation for the determination of kinetics of enzyme catalysed reaction. b. Write the influence of various factors in determining the oxidative stability of lipids. (10 + 10) 	K6	CO5			

\$\$\$\$\$\$\$