LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Com.DEGREE EXAMINATION – **COMMERCE**

THIRDSEMESTER – NOVEMBER 2017

16UMT3AL01- BUSINESS MATHEMATICAL TECHNIQUE

Date: 09-11-2017 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

Part-A (Answer ALL the questions)

 $10 \ge 2 = 20$

5 X 8 = 40

- 1. If $y = (3x^2 + 1)(x^2 + 2x)$ find $\frac{dy}{dx}$.
- 2. The total cost function of a firm is given by $C = 0.04q^3 0.9q^2 + 10q + 10$. Find the average cost (AC) and marginal cost (MC)
- 3. Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial v}$ from $u = 3x^2 + 2xy + 4y^2$
- 4. Explain the general linear programming problem.
- 5. Define artificial variable technique.
- 6. Write the difference between the transportation problem and the assignment problem.
- 7. Write the integral formula for x^n w. r. t. x.
- 8. State any two properties of definite integral.
- 9. Define a project.
- 10. Write the types of float in networking.

Part B

Answer ANY FIVE questions)

11. If $y = sin(msin^{-1}x)$, then show that $(1 - x^2)y_2 - xy_1 + m^2y = 0$.

12. Find the maximum and minimum values of the function $\frac{2}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$.

- 13. Evaluate $\int \log x \, dx$. 14. Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx$.
- 15. Find an initial basic feasible solution for the following transportation problem by using North West corner rule method.

0/D	<i>D</i> ₁	<i>D</i> ₂	D_3	D_4	Available
01	1	2	1	4	30
02	3	3	2	1	50
03	4	2	5	9	20
Required	20	40	30	10	100
_					

16. Find the optimal assignment by Hungarian method for the following problem

Machine/Operator	Ι	II	III	IV
Α	10	5	13	15
В	3	9	18	3
С	10	7	3	2
D	5	11	9	7

17. Construct the network for the given project whose activities and precedence relationships are as given below:

A < C, D; B < E; C, E < F, G; D < H; G < I; H, I < J

18. Construct the network for the project whose activities are given below and hence determine the critical path and the total duration.

Activity	0 – 1	1-2	1-3	2-4	2-5	3-4	3-6	4 – 7	5-7	6-7
Duration	2	8	12	6	2	2	8	5	2	8
(weeks)	5	0	12	0	5	5	0	5	5	0

Part C

(Answer ANY TWO questions)

 $2 \ge 20 = 40$

19. Solve the following Linear programming problem using simplex method.

Maximize $Z = 4x_1 + 10x_2$ Subject to $2x_1 + x_2 \le 50$; $2x_1 + 5x_2 \le 100$; $2x_1 + 3x_2 \le 90$, $x_1, x_2 \ge 0$.

- 20. (a) Evaluate $\int \frac{(3x+7)}{2x^2+3x-2} dx$.
 - (b) The demand law for a commodity is $p = 20 D D^2$. Find the consumer surplus when the demand is 3. (12+8)
- 21. (a)A marketing manager has 5 salesman and 5 sales districts, considering the capability of salesman and nature of district the marketing manager estimates that sales. The marketing manager estimates the sales/ month (in 100's) for each salesman in each district would be as follows

	А	В	С	D	Е
1	32	38	40	28	40
2	40	24	28	21	36
3	41	27	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39

Find the assignment of salesman to district that will result in minimize sales.

(b) Obtain an optimum basic feasible solution to the following transportation problem by using MODI method.

		Available		
	7	3	2	2
	2	1	3	3
Source	3	4	6	5
Demand	4	1	5	10

22. Construct the network for the project whose activities and the three time estimates of these activities (in weeks) are given below:

Activity	1-2	2-3	2-4	3-5	4-5	4-6	5-7	6-7	7-8	7-9	8-10	9-10
t_0	3	1	2	3	1	3	4	6	2	1	4	3
t_m	4	2	3	4	3	5	5	7	4	2	6	5
t_p	5	3	4	5	5	7	6	8	6	3	8	7

Compute

- (a) Expected duration of each activity
- (b) Expected variance of each activity
- (c) Expected variance of the project length.

