LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.A.DEGREE EXAMINATION - ECONOMICS

FIFTHSEMESTER - APRIL 2018

EC 5404- MATHEMATICS FOR ECONOMISTS

Date: 10-05-2018
Time: 09:00-12:00

Dept. No. \square

PART A

Answer any FIVEof the following questions:-

1. Distinguish between 'simple differentiation' and 'partial differentiation'.
2. Define 'Left Side Limit' and 'Right Side Limit'.
3. What is the condition for a point of inflexion?
4. State the conditions for relative maxima and minima of $Z=f(x, y)$.
5. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial y^{2}}$ and $\frac{\partial^{2} z}{\partial x \partial y}$ from $\mathrm{Z}=6 \mathrm{x}^{2}+3 \mathrm{xy}-\mathrm{y}^{3}$.
6. Distinguish between definite and indefinite integrals using suitable examples.
7. Evaluate $\int x \sqrt{2 x^{2}+1} \mathrm{dx}$.

PART B

Answer any FOUR of the following questions:-
8. State therules of differentiation with suitable examples.
9. Illustrate the varioustypes of functions.
10. Explain the conditions for relative maxima, minima and saddle point for the function (x, y).
11. Derive $\operatorname{MR}=\operatorname{AR}\left(1+\frac{1}{e d}\right)$.
12. Show that Average cost and Marginal cost intersect at the lowest point of the Average cost function.
13. State and prove Euler's Theorem.
14. Find the extreme values (if any) of the function $Z(x, y)=3 x^{3}-5 y^{2}-225 x+70 y+23$.

PART C

Answer any TWOof the following question:-
15. Examine the role of differentiation and integration in economic analysis.
16. A company has the following demand and cost function for a particular item, Demand function is $\mathrm{P}+2 \mathrm{Q}^{2}-600=0$, cost function is $\mathrm{TC}=216 \mathrm{Q}-100$.
a. Determine the price and output for maximum sales revenue and calculate maximum revenue.
b. Determine the price and output for maximum profit and calculate the maximum profit.
17. The quantity demanded and the corresponding price under pure competition are determined by the demand and supply functions $P=36-q^{2}$ and $P=6+\frac{q^{2}}{4}$ respectively. Determine the corresponding Consumers' surplus and Producers' surplus.
18. A consumer has the utility function given by: $\mathrm{U}=5 \log \mathrm{x}_{1}+3 \log \mathrm{x}_{2}$. If the budget constraint is given by $10 x_{1}+14 x_{2}=124$.Find the optimum quantities of the two goods that the consumers should purchase in order to maximize the utility subject to the budget constraint.

