M.A. DEGREE EXAMINATION - ECONOMICS

FIRST SEMESTER - NOVEMBER 2017
17PEC1MCO4 - MATHEMATICS AND STATISTICS FOR ECONOMICS

Date: 10-11-2017
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART-A

Answer any FIVE questions in about 75 words each

1. What is a zero sum game? Give example.
2. State the Kuhn-Tucker sufficiency condition for optimization.
3. How does the Martin's rule of matrix algebra withhold its consistency?
4. Compare the application of a Hessian determinant and a Bordered Hessian.
5. What are partitioned matrices?
6. 12 coins are tossed at the same time. What is the probability of getting 9 or more heads in a single toss?
7. State the PDF of Poisson distribution. What are its properties?

PART-B

Answer any FOUR questions in about $\mathbf{3 0 0}$ words each
$(4 \times 10=40)$
8. Solve the following set of linear equations using Martin's rule
$6 x+8 y+z=8$
$4 x+7 y-5 z=5$
$10 x+6 y-9 z=14$
9. Find A^{2} where $\mathrm{A}=\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}$ and check that $\lambda_{\mathrm{i}}{ }^{2}$ is the characteristic root of A^{2}.
10. Two salesmen A and B are working in a certain district. From a sample survey conducted by the head office, the following results are obtained. State whether there is significant difference in the average sales between the two salesmen.
A
B

No. of Sales $10 \quad 18$
Average sales (Rs.) $170 \quad 205$
Standard Deviation (Rs.) 2025
$\left(v=26, \mathrm{t}_{0.05}=2.056\right)$
11. If the consumer's utility function is $U=q_{1}{ }^{2} q_{2}, p_{1}=4, p_{2}=5$ and consumer's income is 120 , determine the quantities of q_{1} and q_{2} which he should purchase in order to maximize his derived utility.
12. Derive the Domar's macro model using differential equations.
13.
a) If $Z=x^{3}+x^{2} y-y^{3}$, find $d Z$
b) If $Z=2 x^{2}-2 y^{2}-3 x-4 x y^{2}$, show that $-=$
14. Verify that $\mathrm{y}=2 \mathrm{Cx}^{2}+\mathrm{C}^{2}$ is a solution of $-+8 \mathrm{x}^{3}-=16 \mathrm{x}^{2} \mathrm{y}$ and find the particular solution when $\mathrm{y}=-1$ and $\mathrm{x}=1$.

PART-C

Answer any TWO questions in about 1200 words each

$(2 \times 20=40)$
15. A test was given to 5 students chosen at random from M.Com class of each of the three universities in Bihar.

University

A	90	70	60	50	80
B	70	40	50	40	50
C	60	50	60	70	60

Perform ANOVA and show if there is any significant difference between the scores of students in the three universities. (Given F 5\% = 3.44).
16. Find solution using linear programming

$$
\begin{aligned}
& \text { Maximize } \mathrm{Z}=45 \mathrm{x}_{1}+55 \mathrm{x}_{2} \\
& \text { Subject to } \quad 6 \mathrm{x}_{1}+4 \mathrm{x}_{2}
\end{aligned} \leq 120
$$

17. Determine the values of x_{1}, x_{2} and x_{3} that maximize or minimize the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}$ $+10 x_{1}-x_{1}{ }^{2}-x_{2}{ }^{2}-x_{3}{ }^{2}$.
18. For the following average cost function, find the minimum average cost and show that at minimum average cost, marginal cost and average cost are equal.

$$
=25-8 x+x^{2}
$$

