B.A. DEGREE EXAMINATION - ECONOMICS

FIFTH SEMESTER - NOVEMBER 2017
EC 5404 - MATHEMATICS FOR ECONOMICS

Date: 13-11-2017
Dept. No. \qquad Max. : 100 Marks
Time: 09:00-12:00

PART - A

Answer any FIVE Questions in about 75 words each
5X4=20

1. Define integral calculus.
2. What is meant by point of inflexion?
3. Find dy $/ d x$, if $X=a t^{4}$ and $Y=4 a t$.
4. What is meant by Homogeneous function?
5. State few applications of differentiation and integration in the field of economics.
6. Write a short note on the relationship between AC and MC.
7. If $Z=X^{3}+Y^{3}-6 X Y$ find the second order partial derivative.

PART - B

Answer any FOUR Questions in about 150 words each
$4 \times 10=40$
8. What is meant by Function and Explain the different functions in economics.
9. State and prove Euler's theorem.
10. Evaluate $\int\left(8 x^{3}-3 x^{2}+x-1\right) d x$.
11. Find the First, Second and third order derivative if $Y=4 x^{5}+3 x+6$.
12. Find the area between the curve $Y=x^{5}$ between $X=2$ and $Y=3$.
13. Find out ion $U=7 x^{5} \frac{+1}{x^{4}}-4 x^{-3}-2 x^{2}-x+9$.
14. Find the second order partial derivation of the function $U=x^{3}+3 x^{2} y+y^{3}$.
15. (a) The demand function for a commodity $\mathrm{P}=30-2 \mathrm{D}$. The supply function $\mathrm{P}=3 \mathrm{D}$. Find consumer's surplus assuming perfect competition.
(b) The supply function for a commodity $\mathrm{P}=2+\mathrm{D}^{2}$. Find producer's surplus when price is Rs. 18 .
16. a) For the total utility function $U=(x+7)(3 x+9 y)$, find marginal utilities of x and y at $\mathrm{x}=1$ and $\mathrm{y}=2$.
b) For the utility Function $u=x^{2}+y^{2} / x^{3}+y^{3}$ Compute Marginal utilities of x and y.
17. Find the Maxima and Minima of the following
functions. a. $y=2 x^{3}-3 x^{2}-36 x+10$

$$
\text { b. } y=x^{2}-4 x-5 \text {. }
$$

18. Integrate the following function: a. $4 x^{2}\left(x^{3}+5\right)^{3} d x \quad$ b. $£ 1 x^{6}\left(x^{7}+1\right)^{2} d x$
c. $9 x^{4}\left(x^{5}+7\right)^{8} d x$
d. $5 x^{3}\left(x^{3}+3\right)^{4} d x$
