LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.A. DEGREE EXAMINATION – **ECONOMICS**

FIRST SEMESTER – **NOVEMBER 2022**

PEC1MC04 – MATHEMATICS FOR ECONOMISTS

Date: 28-11-2022

Dept. No.

Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

	SECTION A		
	Answer ALL the questions		
1	(5 x 1 = 5 Marks)		
	The outcome that is generated after the choice of strategies by the players is called		
a)	a. Plan of Action c. Pay-off b. Choice d. Saddle point	K1	CO1
	Hessian is formed with order partial derivatives of a function.		
b)	a. 1^{st} c. 3^{rd} b. 2^{nd} d. 4^{th}	K1	CO1
	If $\frac{dy}{dt} = 15$, the value of $Y_{(t)}$ is		
c)	a. 15 c. 15t + C b. 0 d. None of the above	K1	CO1
	In case of a boundary solution, a local maximum can also occur on the vertical axis		
d)	where a. $x_1 < 0$ c. $x_1 = 0$ b. $x_1 > 0$ d $x_1 \neq 0$	K1	CO1
	b. $x_1 > 0$ d. $x_1 \neq 0$ The necessary condition for maximization is		
e)	a. $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$ b. $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0$ c. $\Delta_1 < 0, \Delta_2 < 0, \Delta_3 < 0$ d. $\Delta_1 > 0, \Delta_2 < 0, \Delta_3 < 0$	K1	CO1
	State True or False	(5 :	x 1 = 5
2	Marks)		
a)	Lagrange multipliers will always be non-negative.	K2	CO1
b)	Differential equations are used in studies of variables over discrete sets of time values.	K2	CO1
c)	The Kuhn Tucker cannot be applied for s non-linear programing model	K2	CO1
d)	The equation $(1 - c) Y^* - I = 0$ shows Y^* as a function of 'I' explicitly.	K2	CO1
e)	Slack variables are added to the objective function.	K2	CO1
	SECTION B		
		20.3	
	Answer any THREE of the following in 500 words (3 x 10 =	= 30 N	larks)
3	Find the characteristic vectors of $\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	K3	CO2
4	'The non-negativity restriction $x_1 \ge 0$ gives rise to three possible situations'. Explain those situations in the light of Kuhn Tucker conditions with relevant diagrams.	K3	CO2
5	What are difference equations? Give an account of the various types of difference	K3	CO2
_			

7	Find minimax and maximin for A = $\begin{bmatrix} 5 & 8 & 6 \\ 12 & 13 & 6 \\ 11 & 10 & 9 \end{bmatrix}$ Enumerate the procedure for general comparative static analysis in case of one endogenous variable.	K3 K3	CO2
/		K3	
			CO2
	SECTION C		
A	nswer any TWO of the following in 500 words (2 x 12.5 =	25 M	arks)
8	Prove that $y = 2Cx^2 + C^2$ is the solution of the equation $\left(\frac{dy}{dx}\right)^2 + 8x^3 \left(\frac{dy}{dx}\right) = 16x^2y$.	K4	CO3
9	Given the input coefficient matrix $A = \begin{bmatrix} 0.1 & 0.2 \\ 0.5 & 0 \end{bmatrix}$ and final demand $F = \begin{bmatrix} 16 \\ 8 \end{bmatrix}$, find the output levels.	K4	CO3
10	Examine whether the function $Z = x^2 - 3xy + 3y^2 + 4yz + 6z^2$ has maximum or minimum values.	K4	CO3
11	Derive the equilibrium solution for the general Cobweb model: $q_t = \alpha + \beta p_{t-1}$ $p_t = \gamma + \delta q_t$	K4	CO
	SECTION D		
Ans	wer any ONE of the following in 1000 words (1 x 15 =	= 15 M	arks)
	Find the optimum value of the function $Z = x^2 + y^2 + w^2$ subject to the constraint		
12	This the optimum value of the function $Z = x + y + w$ subject to the constraint $x + y + w = 1$.	K5	CO4
13	Find AB if A = $\begin{bmatrix} 1 & 0 & / & 0 & 1 \\ 2 & 1 & / & 0 & 1 \\ 1 & 3 & / & 1 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & / & 0 \\ 2 & 2 \\ 1 & / & 1 \end{bmatrix}$	K5	CO4
	SECTION E		
1	Answer any ONE of the following in 1000 words $(1 \ge 20 \ge 20 \le 10^{-1})$	(larks)	
	Solve graphically:		
	Maximize $Z = 2x + 5y$		
	subject to the constraints $x + 4y \le 24$		CO5
14	$3x + y \le 21$	K6	
	and $x + y \le 9$		
	$x \ge 0$ and $y \ge 0$		
	In the linear market model, take the functions		
	D = 100 - p + 2y		
15	S = 50 + 2p	W.C	00
15	S = 50 + 2p with y = 10 initially and then y = 20. Solve for the equilibrium prices and draw the	K6	CO