LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRSTSEMESTER - APRIL 2017

16PPH1MC04/PH1820 - MATHEMATICAL PHYSICS - I

Date: 04-05-2017 09:00-12:00 Dept. No.

Max.: 100 Marks

Answer all questions

PART A

 $10 \ge 2 = 20$

- 1. Verify whether $f(x) = (x^2)^{4+x^2}$ is solvable by numerical methods.
- 2. Sketch the graph $y = e^x$
- 3. Show that $Z = e^{i\alpha}$ is an operator when operated on $f(z) = z_1$
- 4. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for |z| = 3.
- 5. Determine K for which the following vectors $\vec{u} = (3,2,1)$ and $\vec{v} = (-1,6,K)$ are orthogonal.
- 6. Let R^3 have the Euclidean inner-product. Find the angle between the vectors $\vec{u} = (-1,0,2)$ and $\vec{v} = (3,-5,7)$
- 7. Evaluate $\frac{\Gamma_6}{2\Gamma_3}$ using the knowledge of special functions.
- 8. Write the orthogonal relation for Bessel's polynomials.
- 9. i) Explain Cartesian tensors ii) Write Hooke's law in tensor notation.
- 10. Write the components of moment of inertia tensor.

PART B

$4 \times 7.5 = 30$

- 11. Using Newton-Raphson method, find the root of $(x^4 x)^2 = 100$ which is near to x = 2 corrected up to 4 decimal places.
- 12. a) Derive Cauchy-Riemann equations.

b) Check whether $f(z) = \frac{1}{z}$ is analytic or not in the region from |z| < 5

- 13. Show that the set of all solutions of the differential equation $p\frac{d^2y}{dx^2} + q\frac{dy}{dx} + ry = 0$ form a vector space.
- 14. a) Show that the contraction of the outer product of the two tensors A^l and B_m is an invariant quantity.

b) Show that any inner product of the tensors A_m^l and B_r^{pq} is a tensor of a rank three.

15. Derive the orthogonality relation in Legendre polynomials.

16. Prove that $J_{\frac{1}{2}}(x) = \sqrt{\left(\frac{2}{\pi x}\right)} \sin x$, 'J' stands for Bessel's function.

Answer any four questions

PART C

Answer any four questions

$4 \times 12.5 = 50$

- 17. Apply Euler's method to solve $\frac{dy}{dx} = x + 3y$ subject to y(0) = 1 and hence find the value of y when x = 1.
- 18. Evaluate $\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using contour integration.
- 19. Find the eigen values and the corresponding eigen vectors for the matrix $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 4 & -2 & -4 \end{bmatrix}$
- 20. a) If A^{ij} is contra variant tensor, B_i is contra variant vector, then $A^{ij}B_k$ is a tensor of rank three and $A^{ij}B_j$ is a tensor of rank one.
 - b) Find the metric tensor and the expression for the line element in cylindrical coordinates.
- 21. Show how Bessel's differential equation is obtained from Laplace's equation $\nabla^2 u = 0$ expressed in cylindrical coordinates(ρ, ϕ, z). Show that when, $\lambda \rho = x$, the above problem reduces to Bessel's equation.
- 22. Using contour integration, show that $\int_{-\infty}^{+\infty} \frac{x^2 dx}{x^4+1} = \frac{\pi}{\sqrt{2}}$

\$\$\$\$\$\$\$\$