LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

SECONDSEMESTER – APRIL 2017

16PPH2MC03/ PH 2816 - QUANTUM MECHANICS - I

Date: 24-04-2017 01:00-04:00

Answer all the questions.

Dept. No.

Max.: 100 Marks

SECTION-A

(10 x 2 = 20 Marks)

- Establish the fact that $i\frac{d}{dx}$ is a Hermitian operator. 1.
- 2. If $[\mathbf{a}, \mathbf{a}^{\mathsf{t}}] = 1$ and that $\mathbf{H} = (\mathbf{a}\mathbf{a}^{\mathsf{t}} + \mathbf{a}^{\mathsf{t}}\mathbf{a})\frac{\hbar\omega}{2}$, then show that $[\mathbf{a}, \mathbf{H}] = \hbar\omega\mathbf{a}$
- 3. Prove that if A is hermitian, then $U = \frac{A+iI}{A-iI}$ is unitary.
- 4. For a continuous basis set $|w_{\alpha}\rangle$, represent $\langle \varphi | \psi \rangle$ and $\langle \varphi | F | \psi \rangle$ in terms of the expansion coefficients.
- 5. Show that the first order correction to the energy is the average value of the perturbation over the unperturbed states of the system.
- 6. Use the trial wave function $\psi = \exp(-kr)$ to find the ground state of a hydrogen –like atom.
- 7. Show that J_{μ} is an eigen function of J_z with eigen value (m-1) \hbar
- 8. Establish the commutation relation $[J_+, J_-] = 2\hbar J_z$
- 9. Explain resonance scattering.

Answer any four questions.

10. Outline the Green's function technique for scattering.

SECTION-B

$(4 \times 7.5 = 30 \text{ marks})$

 $(4 \times 12.5 = 50 \text{ marks})$

- 11. Starting from coordinate representation, obtain the operator form for momentum in the momentum representation.
- State and prove any five properties of Pauli spin matrices.
- 13. Express the asymptotic solution to the Schrodinger equation of scattering by a central potential as the sum of phase shifted spherical waves.
- 14. Relate the differential scattering cross-section in the laboratory and center of mass coordinate system.
- 15. Assuming that $\langle j_1 j_2 | j_1 + j_2 , j_2 \rangle \rightarrow +1$, then show that $\langle j_1, j_2-1|j_1+j_2-1, j_1+j_2-1 \rangle = \sqrt{\binom{j_1}{j_1+j_2}}$ and $\langle j_1-1, j_2|j_1+j_2-1, j_1+j_2-1 \rangle = \sqrt{\binom{j_2}{j_1+j_2}}$ 16. Obtain first order correction to the energy of an anharmonic oscillator for a perturbation of the form bx⁴.

SECTION-C

- 17. Obtain the eigenvalues of the radial part of the Schroedinger equation for the hydrogen atom.
- 18. Solve graphically the eigenvalue spectrum of a particle in a square-well potential with finite walls'
- 19. Using the Heisenberg matrix method solve for the eigen values of the 1D harmonic oscillator.
- 20. Discuss stark effect with reference to n=2 state of the hydrogen atom using time independent perturbation technique.
- 21. Derive an expression for first Born's approximation and use it to explain scattering by a screened coulomb potential
- 22. Using Bra and Ket notation, obtain the eigenvalue spectrum of J^2 and J_z .

Answer any four questions.