FOURTHSEMESTER - APRIL 2017
PH 4810- QUANTUM MECHANICS - II

Date: 18-04-2017
09:00-12:00

Dept. No.

PART A

$10 \times 2=20$ marks

1. Write a note on Rabi cycle.
2. Write the condition under which stimulated emission equals spontaneous emission.
3. Write down the expression for the kinetic energy of a relativistic particle and verify that it reduces to $1 / 2 \mathrm{mv}^{2}$ when the speed of the particle $\mathrm{v} \ll \mathrm{c}$, the speed of light
4. State work-energy theorem.
5. Write down the Dirac matrices in terms of the (2x2) Pauli spin matrices and unit matrix
6. Write a short note on Lamb Shift.
7. Show that the Eigen values of a particle exchange operator are ± 1.
8. Distinguish between parahelium and orthohelium.
9. What do you understand by a field?
10. Write a short note on Mollar scattering.

PART B

Answer ANY FOUR questions

4x7.5=30 marks

11. A system in an unperturbed state n is suddenly subjected to a constant perturbation $H(\mathrm{r})$ which exists during time $0 \quad \mathrm{t}$. Find the probability for transition from state n to state k and show it varies simple harmonically with,

$$
\text { Angular frequency }=\frac{E_{k-} E_{n}}{2 \hbar} \text { and Amplitude }=4 \frac{\left.\left|H^{\prime} k n\right| \cdot\right|^{2}}{\left(E_{k}-E_{n}\right)^{2}}
$$

12. (a) If a particle's kinetic energy is n times its rest energy, what is its velocity? (b) Two events occurring at the same place in an inertial frame are separated by a time interval of 6 secs. What is the spatial separation between these two events in an inertial frame in which the events are separated by time interval of 4 secs. ($4+3.5$)
13. For a Dirac particle moving in a central potential, show that the orbital angular momentum is not a constant of motion.
14. The base vectors of a representation are $\binom{1}{0}$ and $\binom{0}{1}$. Construct a transformation matrix U for transformation to another representation having the base vectors
$\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ i \\ \sqrt{2}\end{array}\right)$ and $\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$. Also show that the matrix is unitary.
15. Describe in detail the quantization of a real scalar field.
16. Explain in detail the structure of Spacetime.

PART-C

Answer any FOUR questions:
17. Discuss the time dependent perturbation theory with reference to sinusoidal perturbation and obtain an expression for transition probability.
18. (a) A pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon in terms of the two masses, $m \pi$ and $m \mu$ (assume $m v=0$). Also find the velocity of the outgoing muon.
(b) Two lumps of clay, each of rest mass (m), collide head-on at $\frac{3}{5} \mathrm{c}$ if they stick together, what is the mass (M) of the composite lump? $(8+4.5)$
19. If $\vec{\alpha}$ and β are Dirac matrices prove that

$$
\begin{aligned}
\text { i. } & \alpha_{x}=\frac{1}{2}\left[\alpha_{x} \alpha_{y}, \alpha_{y}\right] \\
\text { ii. } & \alpha_{x} \alpha_{y} \alpha_{z}=\frac{1}{2}\left[\alpha_{x} \alpha_{y} \alpha_{z} \beta, \beta\right] \\
\text { iii. } & \text { Trace }(\vec{\alpha} . B)(\vec{\alpha} . C)=4 \text { B. C }
\end{aligned}
$$

20.(a) Explain how symmetric and antisymmetric wave functions are constructed from unsymmetrized solution of the Schrodinger equation of a system of indistinguishable particles. (b) If $\psi_{+}(\mathrm{r})$ and $\psi_{-}(\mathrm{r})$ are the Eigen functions of the parity operator belonging to even and odd Eigen states, show that they are orthogonal. [6+6.5]
21. What do you understand by Feynman's diagram? What are the rules followed in these diagrams?
22. Klein-Gordon equation is considered as a relativistic equation for a system of arbitrary number of particles and their antiparticles. Why?

\$\$\$\$\$\$\$

