LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2016
16PPH1MCO2 / PH 1818 - ELECTRODYNAMICS

Date: 04-11-2016
Time: 01:00-04:00
\square Max. : 100 Marks

PART A

Answer ALL questions:

1. Two concentric metal spherical shells of radius ' a ' and ' b ' respectively, are separated by a conducting material of conductivity σ, if they are maintained at a potential difference V , what current flows from one to the other?
2. State the superposition principle in electrostatics.
3. For a yellow radiation $v=5.09 \times 10^{14} \mathrm{~s}^{-1}$ activated by sodium, determine the total energy in kJ associated with one mole of photons.
4. State Poynting's theorem.
5. The energy of a particle is three times its rest energy find its velocity.
6. State work-energy theorem.
7. Calculate the radiation damping of a charged particle attached to a spring of maximum frequency ω_{0} driven at frequency ω.
8. The plates of a parallel plate capacitor move close by an infinitesimal distance S. Find the work done by electrostatic forces in terms of the field E.
9. Describe Hall-Magneto Hydrodynamics.
10. Find the cut-off frequency for a given wave guide in the mode TE_{10}

PART B

Answer any FOUR questions:
$4 \times 7.5=30$ marks
11. An electric dipole consists of two equal and opposite charges $(+\mathbf{q}$ and $-\mathbf{q})$ separated by a distance d. Find the approximate potential at points far from the dipole.
12. Two spherical cavities of radius \mathbf{a} and \mathbf{b} are hollowed out from the interior of a neutral conducting sphere of radius R. Point charges q_{a} and q_{b} are placed at each cavity respectively. (i) Find the surface charges $\sigma_{a}, \sigma_{\mathbf{b}}$ and $\sigma_{\mathbf{R}}$. (ii) What is the field outside the conductor? (iii) What is the field within each cavity? $(2.5+2.5+2.5)$
13. Explain in detail the structure of Spacetime.
14. An infinite straight wire carries a current $\mathrm{I}(\mathrm{t})=0$ (for $\mathrm{t} \leq 0$) and $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0}($ for $\mathrm{t}>0)$. Find the resulting electric and magnetic fields.
15. Show that TEM waves cannot occur in a hollow wave guide.
16. Explain Compton scattering. Derive an expression for Compton wavelength of a electron.

PART C

Answer any FOUR questions:
17. Outline the theory of multipole expansion of electrostatic potential in powers of ($1 / \mathrm{r}$).
18. Obtain Maxwell's equations in matter.
19. (a) A pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon in terms of the two masses, $m \pi$ and $m \mu$ (assume $m v=0$). Also find the velocity of the outgoing muon.
(b) Two lumps of clay, each of rest mass (m), collide head-on at $\frac{3}{5} \mathrm{c}$ if they stick together, what is the mass (M) of the composite lump?
20. Find the potentials of a point charge moving with a constant velocity.
21. Derive an expression for the cutoff wavelength for a TE mode of propagation in a rectangular waveguide.
22. Prove the uniqueness theorems in electrostatics.

