LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2016
PH 1809 - CLASSICAL MECHANICS

Date: 02-11-2016
Time: 01:00-04:00
\square Max. : 100 Marks

PART A

Answer ALL questions
($10 \times 2=20$ marks)

1. State and prove the law of conservation of linear momentum for a system of particles.
2. What is a central force?
3. What are transformation equations?
4. Give the Lagrangian for a charged particle moving in an electromagnetic field.
5. What are Euler's angles?
6. Show that $\left.I_{x}, p_{y}\right]=p_{z}$
7. What are fundamental Poisson brackets?
8. What are action angle variables?
9. Explain the normal modes of vibration of oscillators.
10. What are coupled oscillators?

PART B

Answer any FOUR questions

11. State the Kepler's first law of planetary motion and deduce the same from the differential equation of the orbit.
12. Derive the Euler- Lagrange's equation of motion from calculus of variation.
13. Obtain the Euler's equations of motion for a rigid body acted upon by a torque N .
14. Prove that the Poisson brackets are invariant under canonical transformation.
15. Deduce the eigenvalue equation from the theory small oscillations.
16. Obtain the equation of motion of a system of two masses connected by an inextensible string passing over a small smooth pulley.

PART C

Answer any FOUR questions

($4 \times 12.5=50$ marks)
17. What is D'Alembert's principle? Derive the Lagrange's equations of motion from D'Alembert's principle.
18. a) Obtain Hamilton's canonical equations of motion. b) Using the definition of Hamiltonian $H=\sum p_{i} \dot{q}_{i}-L$. Show that $\mathrm{H}=\mathrm{T}+\mathrm{V}$.
19. Discuss the harmonic osciliator problem using Hamilton Jacobi method.
20. Obtain the eigenvalues of a double pendulum from the theory of small oscillations.
21. The transformation equations between two sets of coordinates are $P=2(1+\sqrt{q} \cos p) \sqrt{q} \sin p, Q=\log (1+\sqrt{q} \cos p)$. Show that the transformation is canonical and the generating function for this transformation is $\quad F_{3}=-\left(e^{Q}-1\right)^{2} \tan p$.
22. a) Evaluate the Poisson brackets (i) $\left.J_{x}, J_{y}\right]$ (ii) $\left[J_{y}, J_{z}\right]$
b) Obtain the expression for frequency of a linear harmonic oscillator using action angle variables.

