LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - NOVEMBER 2016

PH 2810 - MICROPROCESSOR \& MICRO CONTROLLERS

\square Max. : 100 Marks

Part - A

Answer ALL Questions.

1. "The starting physical address of any segment is divisible by 16 d " - Justify.
2. Write a note on the queue of $\mu \mathrm{P} 8088$.
3. Explain the role of the 'W' bit and the 'V' bits of $\mu \mathrm{P} 8086$ instructions.
4. Develop a program segment for $\mu \mathrm{P} 8086$ to fill a word array ARY with 5005 H .
5. Develop a program for $\mu \mathrm{P} 8086$ to find the number of 1 s in the number in AX.
6. Write a note on the $D T / \bar{R}$ signal of $\mu \mathrm{P} 8086$.
7. Define a macro which stores in BL the factorial of a number in AL.
8. State the differences between the LOOP and LOOPE instructions.
9. Write a note on the ports of $\mu \mathrm{C} 8051$.
10. Explain the role of the TR and TF flags of $\mu \mathrm{C} 8051$.
Part - B

Answer any FOUR.
11. Explain the various shift and rotate instructions available in $\mu \mathrm{P} 8086$.
12. Develop an ASM program for $\mu \mathrm{P} 8086$ to generate the first ten elements of the Fibonacci series and to store them in a byte array ARY. Assume the first two elements to be 0 and 1 .
13. Develop an ASM program for $\mu \mathrm{P} 8086$ to capitalize an array of upper and lower case alphabets.
14. With a block diagram discuss bus buffering and latching in $\mu \mathrm{P} 8086$ operated in minimum mode.
15. With an example each, explain the various modes of addressing data in $\mu \mathrm{C} 8051$.
16. Discuss in detail the SFRs of $\mu \mathrm{C} 8051$.
Part - C

Answer any FOUR.
($4 \times 12.5=50$)
17. Write detailed notes on all the string manipulating instructions of $\mu \mathrm{P} 8086$.
18. Develop an ASM program for $\mu \mathrm{P} 8086$ to solve $a=\sqrt{b}+\sqrt{c}-\sqrt{d}$, by defining a procedure for square root. Use relative indexed mode of addressing for data.
19. Develop an ASM program for $\mu \mathrm{P} 8086$ to sort a byte array in ascending order.
20. With a block diagram discuss bus buffering and latching in μ P8086 operated in maximum mode.
21. Develop an interface and an ASM program for μ C8051 to make LEDs toggle 5 times a second using timer0 interrupt. The crystal frequency is 1.2 MHz .
22. Develop an interface and an ASM program for $\mu \mathrm{C} 8051$ to implement data acquisition using an 8 bit A / D converter using an external interrupt for EOC.

