LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - NOVEMBER 2016

PH 2815 - MATHEMATICAL PHYSICS - II

Date: 12-11-2016
Time: 01:00-04:00
\square Max. : 100 Marks

PART A

Answer all questions

1. Find the Laplace transform of $\left[2 e^{-3 t}\right]$
2. Find $L^{-1}\left[\frac{s}{s^{2}+1}\right]$
3. Show that if $f(s)$ is the Fourier transform of $f(x)$, then $\frac{1}{b} f\left(\frac{s}{b}\right)$ is the Fourier transform of $\mathrm{F}(b x)$
4. Sketch the graph for $y=\frac{\sin x}{x}$
5. Draw the graph for error function and complementary error function
6. Write the polynomials $L_{2}(x)$ and $L_{3}(x)$ where L stands for Laguerre polynomial
7. Identify the point groups present in the water and nitrogen trifluoride molecules.
8. Prove that every subgroup of an Abelian group is Abelian.
9. Write a note on Chi-square distribution.
10. Define the terms "equally likely events" and "sample space".

PART B

Answer any four questions

11. An inductor of 25 H is in series with a resistance of 20 ohm and an emf of 240 volts. Assuming that at $\mathrm{t}=0$, the current is zero, find the current at time $\mathrm{t}>0$.
12. Find the Fourier sine and cosine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$
13. Derive the Recurrence relation $L_{n+1}(x)=(2 n+1-x) L_{n}(x)-n^{2} L_{n-1}(x)$ where L's stand for Laguerre polynomials.
14. Construct group multiplication table for $C_{2 \nu}$ point group.
15. A car hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.25. Calculate the number of days in a year on which (i) car is not used (ii) the number of days in a year on which some demand is refused.
16. a) Write the recurrence formula associated with Poisson distribution.
b) If the variance of the Poisson distribution is 2 , find the probabilities for $r=1,2,3,4,5$ from the recurrence relation of the Poisson distribution. Also find $P(r \geq 5)$.

PART C

Answer any four questions
17. Find the Laplace transform of the rectangular wave given by $f(t)=\left\{\begin{aligned} 3, & 0<t<b \\ -3, & b<t<2 b\end{aligned}\right.$
18. Use Finite Fourier transform to solve the equation $\frac{\partial V}{\partial t}=\frac{\partial^{2} V}{\partial x^{2}}, 0<x<9, t>0$ and $V_{x}(0, t)=0=$ $V_{x}(9, t), V(x, 0)=8 x$
19. Derive the recurrence relations for Hermite polynomials. Show that the polynomials satisfy their own differential equations.
20. State and prove great orthogonality theorem.
21. i) In a normal distribution, 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.
ii) The number of arrivals of customers during any day follows Poisson distribution with a mean value of 5 . What is the probability that the total number of customers on two days selected at random is less than 2 ?
22. Using Frobenius power series method, solve Laguerre differential equation.

