LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 THIRD SEMESTER - NOVEMBER 2016
 PH 3504/PH 3502/PH 5501 - ELECTRONICS - I

Date: 04-11-2016
Time: 09:00-12:00

Dept. No.

\square Max. : 100 Marks

PART - A

Answer All Questions.
($10 \times 2=20$ marks)

1. State Norton's Theorem.
2. What is a constant current source?
3. What is a multistage amplifier? State the role of coupling devices in such amplifiers.
4. A phase shift oscillator uses 5 pF capacitors. Find the value of R to produce a frequency of 800 kHz .
5. Define open loop gain of an amplifier.
6. What is the difference between D-MOSFET and E-MOSFET. For a D-MOSFET find I_{D} at $V_{G S}=-3 V$ given $\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}(\text { off })}=-8 \mathrm{~V}$.
7. Draw the block diagram of a four-bit parallel binary adder.
8. Construct a D flip-flop by suitably modifying a clocked RS flip flop. Give its truth table.
9. What is a binary register? State its applications.
10. Construct a MOD-3 counter using JK flip flops.

PART - B

Answer ANY FOUR Questions.
11. State and explain superposition theorem.
12. Explain the functioning of a Hartley Oscillator with a neat circuit diagram.
13. Describe the construction and working of an n-channel FET. Plot its output characteristics.
14. Simplify into sum of products F (A, B, C, D) $=\Sigma(2,3,12,13,14,15)$ using K-map and draw the logic circuit for the simplified expression.
15. Write short notes on memory devices ROM and RAM.

PART C

Answer ANY FOUR questions.
($4 \times 12.5=50$ marks $)$
16. Obtain expressions for the input impedance, current gain, voltage gain and output impedance in terms of hybrid parameters using the equivalent circuit of a transistor in CE configuration.
17. Describe with the relevant circuit diagram the biasing of a transistor using the voltage divider biasing technique.
18. Construct a circuit consisting of opamps that will solve the simultaneous equations, $a x+b y=p ; c x-d y=q$.
19. (a) Explain the working of a JK flip flop with the logic diagram and truth table.
(b) Draw the logic circuit of a 1 to 4 demultiplexer and explain its operation with the truth table.
20. (a) Explain the working of a 4 bit binary down counter using JK flip flops.
(b) Explain the operation of shifting a four bit data into a four bit register.

