B.Sc. DEGREE EXAMINATION - PHYSICS
 THIRD SEMESTER - NOVEMBER 2016
 PH 3506 - MATHEMATICAL PHYSICS

Date: 04-11-2016
Time: 09:00-12:00
\square Max. : 100 Marks

PART - A
($10 \times 2=20$ Marks $)$
Answer ALL the questions:

1. Find the principal value of i^{i} where $i=\sqrt{-1}$.
2. State Cauchy's integral theorem.
3. Integrate $\iint x y d x d y$ between $x=0$ to $x=1, y=0$ to $y=1$.
4. Write the heat equation.
5. Determine the fundamental period of $\cos \pi x$ and $\sin x$.
6. What is Fourier's integral?
7. Given $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, find $A^{T} A$, where A^{T} is the transpose of matrix A.
8. If the det value of a 2×2 matrix B is 4 . What is the det value of $2 B$?
9. Write Newton's forward interpolation formula for equally spaced data.
10. Given $y^{\prime}=1+y$ with $y(0)=1$ and step size as 0.2 , find the value of $y(0.2)$ using Euler's method.

PART - B

($4 \times 7.5=30$ Marks)

Answer any FOUR questions:

11. Determine the harmonic conjugate function of $u=\sin x \cosh y$ and its corresponding analytic function.
12. State and prove Green's theorem in a plane.
13. Find the Fourier series of the function $f(t)=\left\{\begin{array}{c}0, \text { if }-\frac{\pi}{\omega}<t<0 \\ E \sin \omega t, \text { if } \quad 0<t<\frac{\pi}{\omega}\end{array}\right.$
14. Show that $N=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ satisfies Cayley-Hamilton theorem.
15. Find the Lagrange interpolating cubic polynomial for the following

x	0	3	5	6
$y(x)$	-6	6	104	196

and compute $y(4)$.
16. Using Trapezoidal rule, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by dividing the range into 10 equal parts.

PART - C

Answer any FOUR questions:

17. (i) Find the real and imaginary parts of $\tanh (x+i y)$.
(ii) Integrate $\oint \frac{(1+2 z) \cos z}{(2 z-1)^{2}} d ;$ counterclockwise around the circle $|z|=1$.
18. Given $\vec{v}=y^{2} \vec{\imath}+z^{2} \vec{\jmath}+x^{2} \vec{k}$ and $\phi=x+y+z$, find the following
(i) $\operatorname{curl}(\operatorname{grad} \phi)$
(ii) $\operatorname{div}($ curl $\vec{v})$
(iii) $\operatorname{curl}(\phi \vec{v})$
19. Obtain the Fourier Cosine series and Fourier Sine series of the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{2}{L} x \quad \text { if } 0<x<\frac{L}{2} \\
\frac{2}{L}(L-x) & \text { if } \frac{L}{2}<x<L
\end{array} .\right.
$$

20. Diagonalize the matrix $S=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
21. Find the solution to four decimals of the following system of simultaneous equations by Gauss-Seidel iterative method.

$$
\begin{aligned}
10 x+2 y+z & =9 \\
2 x+20 y-2 z & =-44 \\
-2 x+3 y+10 z & =22
\end{aligned}
$$

22. (i) State and prove Cauchy's integral formula.
(ii) Find the directional derivative of $f=x y z$ at the point $(-1,1,3)$ in the direction of

$$
\begin{equation*}
\vec{a}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k} \tag{7.5+5}
\end{equation*}
$$

