B.Sc. DEGREE EXAMINATION - PHYSICS
 FOURTH SEMESTER - NOVEMBER 2016

PH 4504/PH 4502/PH 6604 - MATHEMATICAL PHYSICS

Date: 04-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART - A

Answer ALL questions:
(10×2 = 20 Marks)

1. Represent $z=\frac{1+i}{1-i}$ in polar form.
2. Find the value of $\ln (-1)$.
3. Evaluate $\int_{0}^{i} z^{2} d z$
4. What is the principle of deformation of path?
5. What are fundamental mode and overtones of a vibrating string?
6. Determine the value of c if $u(x, t)=e^{-16 t} \sin 2 x$ satisfies $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial^{2} x}$.
7. Give the change of scale property of a Fourier transform.
8. Define Fourier cosine transform of a function.
9. Write the Lagrangian interpolation formula for unequal intervals.
10. Compute the value of $y(0.02)$ for $y^{\prime}=1+y^{2}$ with $y(0)=0$ and $h=0.02$ using Euler's method.

PART - B

Answer any FOUR questions:
($4 \times 7.5=30$ Marks)
11. Find the real and imaginary parts of $\tan (x+i y)$.
12. Evaluate $\int_{C} \frac{\sinh z}{z^{4}} d z$ in counter clockwise where C is the circle $|z|=2$.
13. Obtain the general solution of one dimensional wave equation using product method.
14. State and prove convolution theorem for Fourier transforms.
15. Evaluate $\int_{0}^{2} \frac{d x}{1+x^{3}}$ by dividing into 8 equal parts using Simpson's $1 / 3^{\text {rd }}$ rule.

PART - C

Answer any FOUR questions:
16. (a) Derive Cauchy-Riemann equations for a function $f(z)$ to be analytic.
(b) Show that $u=\sin x \cosh y$ is a harmonic function.
17. (a) Evaluate $\int_{C} \bar{z} d z$ from $z=0$ to $z=4+2 i$ along the curve C given by $z=t^{2}+i t$.
(b) State and prove Cauchy's integral theorem.
18. Obtain the solution of two dimensional Laplace equation in electrostatic potential problem.
19. (a) Find the Fourier sine transform of $\frac{e^{-x}}{x}$.
(b) If $F(w)$ is the Fourier transform of $f(x)$, show that $\mathrm{F}\left\{\mathrm{f}^{\prime \prime}(\mathrm{x})\right\}=-\mathrm{w}^{2} \mathrm{~F}(\mathrm{w})$.
20. Derive Newton's forward interpolation formula and use it to find $y(31.25)$ from the following table

x	30	31	32	33	34
y	0.5000	0.5150	0.5299	0.5466	0.5592

