LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 FOURTH SEMESTER - NOVEMBER 2016
 PH 4506 - ELECTRONICS - I

Date: 07-11-2016
Time: 01:00-04:00
Dept. No. \square

$\underline{\text { PART - A }}$

Answer All Questions.
(10 X 2 = 20 MARKS)

1. State Maximum power transfer theorem.
2. What are hybrid parameters?
3. Define operating point and obtain its value for a collector load of $4 \mathrm{k} \Omega$ and quiescent current of 1 mA . Given $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$.
4. Mention the different techniques adopted for coupling of amplifier stages.
5. What is meant by transistor biasing?
6. Define CMRR and express it in decibels.
7. What is a demultiplexer?
8. Draw the logic symbol and write the truth table of a D flip-flop.
9. Give the difference between monolithic and hybrid circuits.
10. What is photolithography?

$\underline{\text { PART - B }}$

Answer ANY FOUR Questions.

11. State Norton's theorem. Discuss its application to circuit analysis with a suitable illustration.
12. With a neat diagram explain the working of a Monostable Multivibrator.
13. Explain the working of a summing amplifier. How can it be modified to function as a difference amplifier?
14. Explain the working of a three bit binary ripple counter with the logic diagram, truth table and wave form diagram.
15. Describe the fabrication of a capacitor in a monolithic integrated circuit.

PART C

16. Obtain expressions for Ai, Av and Zi interms of ' h ' parameters for a transistor amplifier connected in common emitter configuration. Find the h parameters when
(a) Output ac is short-circuited; $\mathrm{I}_{\mathrm{b}}=10 \mu \mathrm{~A} ; \mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{be}}=10 \mathrm{mV}$.
(b) Input ac open-circuited; $\mathrm{V}_{\mathrm{be}}=0.65 \mathrm{mV}$; $\mathrm{Ic}=60 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{ce}}=1 \mathrm{~V}$.
17. Explain transistor RC coupled amplifier with special reference to frequency response. A single stage amplifier has a voltage gain of $60 \mathrm{~V}, \mathrm{Rc}=500 \Omega$ and input impedance is $1 \mathrm{k} \Omega$. Calculate the overall gain when two such stages are cascaded through RC coupling.
18. Describe the working of an n-channel or p-channel FET with a properly biased circuit. Explain the drain and transfer characteristics for the same.
19. (a) Describe the working of a JK flip-flop with necessary circuit using gates and truth table.
(b) Design a JK master slave flip flop using gates and explain its operation.
20. Describe with necessary diagrams the steps involved in the epitaxial-diffused fabrication process for integrated circuits.
